
c© 2012 Ralf Sasse



SECURITY MODELS IN REWRITING LOGIC FOR
CRYPTOGRAPHIC PROTOCOLS AND BROWSERS

BY

RALF SASSE

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Doctoral Committee:

Professor José Meseguer, Chair and Director of Research
Assistant Professor Samuel T. King
Associate Professor Grigore Ros,u
Dr. Shuo Chen, Microsoft Research
Dr. Catherine Meadows, Naval Research Laboratory



Abstract

This dissertation tackles crucial issues of web browser security. Web browsers

are now a central part of the trusted code base of any end-user computer sys-

tem, as more and more usage shifts to services provided by web sites that

are accessed through those browsers. Towards this goal we identify three key

aspects of web browser security: (i) the machine-to-user communication, (ii)

internal browser security concerns and (iii) machine-to-machine communi-

cation.

We address aspects (i) and (ii) by developing a methodology that creates

a formal model of a web browser and analyzes that model. We showcase

this on the graphical user interface of both Internet Explorer and the Illinois

Browser Operating System (IBOS) web browsers. Internal security aspects

are addressed in the IBOS browser for the same origin policy.

For aspect (iii) we look at the formal analysis of cryptographic protocols,

independent of any particular browser. We focus on the formal analysis of

protocols modulo algebraic properties of their cryptographic functions, since

it is well-known the protocol verification methods that ignore such algebraic

properties using a standard Dolev-Yao model can verify as correct proto-

cols that can be in fact broken using the algebraic properties. We adopt a

symbolic approach and use the Maude-NPA cryptographic protocol analysis

tool, which has extended unification capabilities modulo theories based on

the new narrowing strategy we developed. We present case studies showing

that appropriate protocols can be analyzed so that either attacks are found,

or the absence of attacks can be proven.

Keywords: browser security, visual invariants, same origin policy, seman-

tic unification, variant narrowing, cryptographic protocol analysis, rewriting

logic.

ii



ACKNOWLEDGMENT

I am grateful to all the welcoming, friendly and smart people that I have met

over the course of my PhD program here at the Department of Computer

Science at the University of Illinois at Urbana-Champaign. Among them are

the fellow students, the professors and the whole academic and administrative

staff of the department as well as members of the community that I was

privileged to interact with.

Now I want to single out a few people for special thanks as they made

this overall experience possible. First of all, I am extremely grateful to my

advisor and friend, José Meseguer, for all his support, both technical and

financial, as well as the challenges and opportunities he has provided me

with over the years, and for instilling the ideals of scholarly pursuit in me by

exemplifying them at all times.

I am also very thankful to my committee members Shuo Chen, Sam

King, Catherine Meadows and Grigore Rosu for all their kindness and help

throughout this work. I would also like to thank all the other authors of

papers I was involved in for the privilege of having worked with them, and

being able to learn from them during that work.

I want to especially thank my parents, Heidrun Sasse and Fritz Sasse, for

all their invaluable support, tremendous guidance, and unceasing motivation

and encouragement over the years.

Let me try to recall as best as I can all the people that have influenced

this endeavour, and let me apologize in advance for any of the inevitable

omissions that will slip through:

José Meseguer, Shuo Chen, Catherine Meadows, Sam King, Grigore Ros,u,

Mike Katelman, Camilo Rocha, Edgar Pek, Santiago Escobar, Peter

Ölveczky, Raúl Gutiérrez Timo Latvala, Artur Boronat, Joe Hendrix, Musab

AlTurki, Kyungmin Bae, Azadeh Farzan, Mark Hills, Traian S, erbănut, ă, An-

drei S, tefănescu, Jeff Green, Francisco Duran, Narciso Mart́ı-Oliet, Rajesh

iii



Kumar Karmani, Chucky Ellison, Patrick Meredith, Dennis Griffith, Fe-

lix Schernhammer, Beatriz Alarcón, Sonia Santiago, Alexandre Duchâteau,

Jonas Eckhardt, Tobias Mühlbauer, Nana Arizumi, Miguel Palomino, Mark-

Oliver Stehr, Steven Lauterburg, Pavithra Prabhakar, Stephen Skeirik, Rus-

tan Leino, Wolfram Schulte, Helen Wang, Yi-Min Wang, Ravinder Shankesi,

Shuo Tang, Deepak Kapur, Christopher Lynch, Paliath Narendran, Carl A.

Gunter, Andrea Whitesell, Donna Coleman, Holly Bagwell, Kathy Runck,

Mary Beth Kelley, Kay Tomlin, Wolfgang Ahrendt, Andreas Roth, Peter H.

Schmitt, Heidrun Sasse, Fritz Sasse.

iv



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . 1
1.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . 6
1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

CHAPTER 2 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . 8
2.1 The Maude Tool . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Maude-NPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Internet Explorer . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Illinois Browser Operating System . . . . . . . . . . . . . . . . 12

CHAPTER 3 GUI LOGIC ANALYSIS FOR IE . . . . . . . . . . . . 13
3.1 Overview of Our Methodology . . . . . . . . . . . . . . . . . . 16
3.2 Case Study 1: Status Bar Spoofing Based on Static HTML . . 18
3.3 Case Study 2: Address Bar Spoofing . . . . . . . . . . . . . . 30
3.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

CHAPTER 4 BROWSER SECURITY ANALYSIS FOR IBOS . . . . 44
4.1 IBOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Formal Modeling Methodology . . . . . . . . . . . . . . . . . . 48
4.3 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

CHAPTER 5 FOLDING VARIANT NARROWING AND
OPTIMAL VARIANT TERMINATION . . . . . . . . . . . . . . . 104
5.1 Preliminaries: R,Ax-rewriting . . . . . . . . . . . . . . . . . . 111
5.2 Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3 Narrowing Strategies and Optimal Variant Termination . . . . 117
5.4 Folding Variant Narrowing . . . . . . . . . . . . . . . . . . . . 125
5.5 The Finite Variant Property . . . . . . . . . . . . . . . . . . . 136
5.6 Checking the Finite Variant Property . . . . . . . . . . . . . . 145
5.7 Variant-based Equational Unification . . . . . . . . . . . . . . 159
5.8 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

v



CHAPTER 6 PROTOCOL ANALYSIS MODULO COMBINA-
TION OF THEORIES: A CASE STUDY IN MAUDE-NPA . . . . 166
6.1 Protocol Specification and Analysis in Maude-NPA . . . . . . 168
6.2 A Unification Algorithm for XOR ∪ pk-sk ∪ AC . . . . . . . . 172
6.3 Finding attacks modulo XOR ∪ pk-sk ∪ AC in Maude-NPA . . 175
6.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

CHAPTER 7 CONCLUSIONS AND FUTURE WORK . . . . . . . . 188
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

APPENDIX A EXPLAINED MAUDE SPECIFICATION
OF THE IE MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . 194
A.1 Status Bar - Explained Specification . . . . . . . . . . . . . . 194
A.2 Address Bar - Explained Specification . . . . . . . . . . . . . . 222

APPENDIX B EXPLAINED MAUDE SPECIFICATION
OF THE IBOS MODEL . . . . . . . . . . . . . . . . . . . . . . . . 243
B.1 IBOS - Model Architecture . . . . . . . . . . . . . . . . . . . . 243
B.2 Internal Rules Termination . . . . . . . . . . . . . . . . . . . . 269
B.3 Display Memory Modeling . . . . . . . . . . . . . . . . . . . . 275
B.4 IBOS Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

vi



CHAPTER 1

INTRODUCTION

A current trend in computing is to move applications to the web, i.e., instead

of having an application installed on one’s computer for a specific task, one

goes to a website that offers that functionality as a service. Some popular

examples are e-mail (Google Mail and others), banking and tax filing (Turbo-

Tax and others), and electronic commerce. These applications are obviously

quite security critical as confidentiality of the information is supremely im-

portant. With these applications migrating to the web and being run as

services, the web browser that is used to access these applications becomes

a crucial part of the chain of trust for these services.

In some sense, the browser is becoming the operating system of the fu-

ture. In the past the operating system was the most security critical com-

ponent, with any breach of it potentially leading to disaster, but now the

web browser has to be included in that critical set of code. However, most

browsers have been developed with a limited emphasis on security. Browsers

are historically built on top of prior browser versions and thus tend to be

monolithic constructions and therefore quite large and complex. The chain

of trust for services like those mentioned above can therefore be significantly

strengthened by efforts aimed at improving browser security.

Browser security can be considered to have three aspects: (i) the machine-

to-user communication, (ii) internal browser security concerns and (iii) the

machine-to-machine communication.

In this dissertation we formally model and analyze two web browsers:

Internet Explorer (IE) and the Illinois Browser Operating System (IBOS)

with respect to security aspects (i) for IE and IBOS and (ii) for IBOS. We

also present new contributions to the security aspect (iii) in a way that

is browser generic by focusing on the formal analysis of the cryptographic

protocols used to secure machine-to-machine communication.

For the machine-to-user communication, trusted visual cues need to in-

1



deed be (proven) trustworthy. Specifically, we analyze the correctness of the

address bar with respect to the content of the current page in both Internet

Explorer (IE) and the Illinois Browser Operating System (IBOS). In IE we

find a number of possible attacks while we can show that IBOS is safe. In IE

we go still further and analyze the status bar for static HTML as well. For

the status bar of IE we find a number of potential attacks, but we also show

how to make IE safe against them.

Address bar correctness is a very important property to help prevent

certain kinds of phishing attacks, or at least make phishing more difficult.

Phishing is the process in which an attacker tries to steal a user’s credentials

for any kind of service. To this end, the attacker prepares a website that

looks exactly like the website of a real service, e.g., a bank’s website. Then

the attacker will send out a massive number of e-mails, asking users to log

into the service at his copy of the website. If a user falls for this deception,

the attacker gains access to that user’s credentials, can manipulate his/her

account, and potentially steal the user’s money. With a correct address bar,

the user has some defense, as it is possible to spot that the address bar shows

some string that is not the URL of the web page expected. This of course

only helps those users that are diligent in checking such indicators. Now,

the status bar correctness of IE is relevant as well, as Outlook Express (an

e-mail reader app) at the time used the same logic for showing the URL of

a target link in an e-mail. So, if both the address bar and status bar can

be manipulated, this leads to a perfect spoofing chain for the attacker, going

from the e-mail, where checking the mouse-over link produces the right URL,

to the website, which looks perfect, as it is a straight copy of the real one,

to the address bar, which shows the same URL.

For internal browser security concerns we look at the same origin policy

(SOP) and check it in IBOS. The SOP essentially states that one website

cannot get information from another website through the browser, see [115]

for more detail. A number of properties, taken together, is sufficient for SOP

to hold. Some further properties are also considered.

For the machine-to-machine communication the underlying cryptographic

protocols need to be secure. Even though the chain of trust for machine-to-

machine communication uses cryptographic protocols in a ubiquitous fashion,

the formal analysis of the security of cryptographic protocols is mostly based

on the Dolev-Yao model [39]. It is a formal model in which legitimate partic-

2



ipants are trying to execute a protocol together. There is also an adversary

trying to learn all possible secrets to which it should not have access. The

adversary is active, meaning it can send and receive messages as if it were

a normal participant. However, it also controls the network, i.e., the adver-

sary can read all messages, can drop messages that are inconvenient for its

nefarious purposes, and can add messages to the network that look like they

are from any one legitimate participant chosen by the adversary. The only

limit placed on the adversary is that the underlying cryptography is perfect

and thus the model treats it as a black box. The adversary cannot read the

contents of encrypted messages or create encrypted messages, unless it knows

the required key for that message.

In practice, though, the protocol functions will have some inherent alge-

braic properties that need to be accounted for. If the algebraic properties

are not taken into account in the verification, then even a ‘proven-secure’

(according to the Dolev-Yao model) protocol can have exploitable vulnera-

bilities based on those properties [110]. For formal verification to be able to

deal with such algebraic properties, the properties need to be explicitly mod-

eled as part of the cryptographic protocol specification. So we are using an

extension of the Dolev-Yao model in which some of the algebraic properties

are explicitly modeled.

To improve on the state-of-the-art for the above-mentioned protocol secu-

rity issues, two things are needed: (i) cryptographic protocol analysis meth-

ods and tools that can take those algebraic properties into account; and (ii)

ways to actually deal with different algebraic properties, which for symbolic

analysis purposes boils down to being able to perform unification modulo the

relevant algebraic theories.

This dissertation develops a formal specification and verification method-

ology, based on rewriting logic and implemented in Maude, capable of analyz-

ing and verifying, as well as finding bugs (i.e., counter-examples), in models of

browser software and of cryptographic protocols used for machine-to-machine

communication. Specifically, it addresses the three different aspects (i), (ii)

and (iii) of browser security mentioned above as follows:

• Browser to user connection by GUI. We analyze GUI security

(correctness!) aspects of both IE and IBOS.

• Internal browser security. We prove the same origin policy for

3



IBOS.

• Machine-to-machine connection by cryptographic protocols.

We extend the cryptographic protocol analysis tool Maude-NPA with

a new generic unification algorithm based on a new version of nar-

rowing and show case studies on cryptographic protocols that are an-

alyzed modulo their algebraic properties using our generic unification

algorithm.

Web browser security is highly important as more and more applications

are moved from the traditional desktop application framework to on-demand

online versions (often called services) which are usually accessed through

a web browser. The web browser is thus mutating to a kind of operating

system for services. We consider security aspects first of a commercial off-

the-shelf web browser (Internet Explorer (IE)) and the effects its graphical

user interface (GUI) design can have on security. For IE we exclusively look

at GUI properties. Then we turn to analyze the design of a new, state-of-

the-art and secure-by-design web browser which is tightly integrated into a

(proven) secure operating system microkernel (IBOS [117]). For IBOS we

look at both GUI properties and internal browser security considerations.

This methodology consists of two steps: (i) creating a formal model out

of given source code and code developer comments1 and (ii) formal analysis

of the model created in step (i).

Overall the analysis is based on browser models which have been extracted

from the source code, with developer interaction to get at the intent.2 This

modeling process by itself has found many unknown types of attacks in IE

and some bugs directly in IBOS, whenever code reading and developer intent

did not match up as they should. The models of the browsers are given in

rewriting logic and can thus be executed and analyzed using the Maude tool.

Browser to user connection by GUI. For the GUI analysis work the

1This step, by being a passage from an informal description to a formal model, is
not itself amenable to formal verification; however, the executable nature of the formal
specification so obtained makes it amenable to thorough testing to ensure that the right
formal model has been captured.

2In the case of Internet Explorer, since the source code is proprietary, we relied on one
of our collaborators in that work (Shuo Chen) to first extract pseudocode models from
IE’s source code, and based our Maude models on such pseudocode. Instead, in the case
of the IBOS browser we were able to directly study the source code and to have extensive
discussions with the developers.

4



particular concern was the browser’s address bar, which should always be

guaranteed to truthfully tell the user what website is currently being viewed.

The address bar has been analyzed for both IE and IBOS. The status bar is

also of interest whenever navigation to a new page is considered and should

be a good indicator of what the contents of the next web page (and address

bar) should be. The status bar has only been analyzed for IE.

Internal browser security. In the analysis of the newly developed

IBOS browser we looked at the same origin policy (SOP) that says that

a website cannot get user information from another website through the

browser. This is necessary so one web page cannot steal login information or

any other credentials that the user is presenting to a different web page. The

SOP can be broken down into a set of properties that taken together imply

SOP. We have done that and we show all the components and how they are

verified. We conclude that IBOS fulfills SOP. As already stated above, the

address bar in IBOS has also been under scrutiny.

Protocol analysis. For the analysis of cryptographic protocols we de-

velop new unification methods. This is to improve the capabilities of a crypt-

analysis tool, the Maude-NPA [48], which we apply to case-studies. The

analysis of cryptographic protocols we are interested in takes into account

underlying algebraic properties of the protocol to be analyzed and is not

restricted to just the Dolev-Yao model, for which the whole cryptography

is a black box. This requires a modeling framework, as well as tool sup-

port, that is capable of handling these algebraic properties of interest. This

deeper level of analysis is needed in practice as protocols shown secure under

Dolev-Yao have been broken using the algebraic properties of their crypto-

graphic operations [110]. In this dissertation we focus on two aspects of this:

to be able to do protocol analysis modulo algebraic properties, we develop

a generic algorithm for unification modulo theories which is based on nar-

rowing, and second, we show some case studies on protocols for which our

new generic unification algorithm is needed for the analysis, since the proto-

cols in question could not be analyzed properly before. Development of the

above-mentioned unification modulo a theory has been integrated into the

Maude-NPA cryptographic protocol analysis tool, which is used in the case

study carried out subsequently.

5



1.1 Summary of Contributions

This dissertation contributes to several ongoing research efforts within the

areas of formal methods, web browser security, and cryptographic protocol

analysis. This list highlights the main contributions of the dissertation:

1. A methodology for web browser formal modeling and analysis which

is effective in finding real-life bugs that allow attacks, while increasing

confidence in the absence of attacks.

2. In the Internet Explorer browser graphical user interface we find 9

attacks in the form of HTML tree types for status bar spoofing, and 4

actual attack types for address bar spoofing.

3. In the IBOS browser we verify the same origin policy and the consis-

tency of the address bar. We also find a bug in the display memory

management leading to browser tabs being unusable.

4. A new generic method for the effective computation of unifiers modulo

equational theories, based on narrowing modulo axioms, called folding

variant narrowing.

5. An automatic method to check whether a given equational theory has

the finite variant property.

6. Applications of folding variant narrowing in the cryptographic protocol

analysis tool Maude-NPA. This very generic way of obtaining finitary

equational unification algorithms by narrowing and folding variant nar-

rowing has further automated deduction applications.

7. A case study for cryptographic protocol analysis modulo exclusive-or

and other cryptographic equational properties. Attacks are found in

insecure protocols, while secure protocols can be proved to be so by

our methods.

1.2 Organization

The dissertation is organized into chapters as follows:

6



• Chapter 1. Identifies problems this thesis is addressing and motivates

at a high-level the approach being used.

• Chapter 2. Discusses technical preliminaries required for the rest of the

dissertation.

• Chapter 3. Looks at the Internet Explorer graphical user interface,

models the status bar and address bar and analyzes their properties.

Finds multiple attacks on both and proposes fixes.

• Chapter 4. In this chapter IBOS is motivated, described, and modeled.

In a number of case studies security properties of IBOS are proven and

bugs are exposed.

• Chapter 5. Considers narrowing strategies and optimal variant termi-

nation before introducing folding variant narrowing. The finite variant

property is explained and automatic checking is considered. This leads

to equational unification algorithms based on variants.

• Chapter 6. Analyzes protocols modulo the combination of some theo-

ries. In particular, introduces specification and analysis of a protocol

in the Maude-NPA and the unification algorithm based on the prior

chapter. Three protocols are analyzed and attacks in them are found,

one of the protocols is then fixed and shown that no further attacks

remain.

• Chapter 7. This chapter presents the conclusions of the dissertation

and discusses future research directions.

Noting that (i), (ii) and (iii) are quite different in nature we are presenting

the related work as it is appropriate in each Chapter of this dissertation. See

Sections 3.5, 4.4, 5.9, and 6.4.

7



CHAPTER 2

PRELIMINARIES

In this thesis, we follow the classical notation and terminology from [119] for

term rewriting, and from [89] for rewriting logic and order-sorted notions.

We assume an order-sorted signature Σ = (S,≤,Σ) with poset of sorts (S,≤)

and such that for each sort s ∈ S the connected component of s in (S,≤) has

a top sort, denoted [s], and all f : s1 · · · sn → s with n ≥ 1 have a top

sort overloading f : [s1] · · · [sn] → [s]. We also assume an S-sorted family

X = {Xs}s∈S of disjoint variable sets with each Xs countably infinite. TΣ(X )s
is the set of terms of sort s, and TΣ,s is the set of ground terms of sort s. We

write TΣ(X ) and TΣ for the corresponding order-sorted term algebras. For a

term t, Var(t) denotes the set of all variables in t.

Positions are represented by sequences of natural numbers denoting an

access path in the term when viewed as a tree. The top or root position

is denoted by the empty sequence Λ. We define the relation p ≤ q between

positions as p ≤ p for any p; and p ≤ p.q for any p and q. Given U ⊆ Σ∪X ,

PosU(t) denotes the set of positions of a term t that are rooted by symbols

or variables in U . The set of positions of a term t is written Pos(t), and the

set of non-variable positions PosΣ(t). The subterm of t at position p is t|p
and t[u]p is the term t where t|p is replaced by u.

A substitution σ ∈ Subst(Σ,X ) is a sorted mapping from a finite subset

of X to TΣ(X ). Substitutions are written as σ = {X1 7→ t1, . . . , Xn 7→ tn}
where the domain of σ is Dom(σ) = {X1, . . . , Xn} and the set of variables

introduced by terms t1, . . . , tn is written Ran(σ). The identity substitution is

id. Substitutions are homomorphically extended to TΣ(X ). The application

of a substitution σ to a term t is denoted by tσ. For simplicity, we assume

that every substitution is idempotent, i.e., σ satisfies Dom(σ)∩Ran(σ) = ∅.
Substitution idempotency ensures tσ = (tσ)σ. The restriction of σ to a

set of variables V is σ|V ; sometimes we write σ|t1,...,tn to denote σ|V where

V = Var(t1) ∪ · · · ∪ Var(tn). Composition of two substitutions is denoted

8



by σσ′. Combination of two substitutions is denoted by σ ∪ σ′. We call an

idempotent substitution σ a variable renaming if there is another idempotent

substitution σ−1 such that (σσ−1)|Dom(σ) = id.

A Σ-equation is an unoriented pair t = t′, where t, t′ ∈ TΣ(X )s for some

sort s ∈ S. Given Σ and a set E of Σ-equations, order-sorted equational

logic induces a congruence relation =E on terms t, t′ ∈ TΣ(X ) (see [90]).

Throughout this thesis we assume that TΣ,s 6= ∅ for every sort s, because this

affords a simpler deduction system. An equational theory (Σ, E) is a pair

with Σ an order-sorted signature and E a set of Σ-equations.

The E-subsumption preorder vE (or just v if E is understood) holds

between t, t′ ∈ TΣ(X ), denoted t vE t′ (meaning that t′ is more general than

t modulo E), if there is a substitution σ such that t =E t
′σ; such a substitution

σ is said to be an E-match from t to t′. The E-renaming equivalence t ≈E t′,
holds if there is a variable renaming θ such that tθ =E t

′. We write t <E t
′

if t vE t′ and t 6≈E t′. Relations ≈E and <E are extended to substitutions

in a similar way. For substitutions σ, ρ and a set of variables V we define

σ|V =E ρ|V if xσ =E xρ for all x ∈ V ; σ|V vE ρ|V if there is a substitution η

such that σ|V =E (ρη)|V ; and σ|V ≈E ρ|V if there is a renaming η such that

(ση)|V =E ρ|V . We write σ <E σ
′ if σ vE σ′ and σ 6≈E σ′.

An E-unifier for a Σ-equation t = t′ is a substitution σ such that tσ =E

t′σ. For Var(t)∪Var(t′) ⊆ W , a set of substitutions CSUW
E (t = t′) is said to

be a complete set of unifiers for the equation t = t′ modulo E away from W

iff: (i) each σ ∈ CSUW
E (t = t′) is an E-unifier of t = t′; (ii) for any E-unifier

ρ of t = t′ there is a σ ∈ CSUW
E (t = t′) such that ρ|W vE σ|W ; (iii) for all

σ ∈ CSUW
E (t = t′), Dom(σ) ⊆ (Var(t) ∪ Var(t′)) and Ran(σ) ∩W = ∅. If

the set of variables W is irrelevant or is understood from the context, we

write CSUE(t = t′) instead of CSUW
E (t = t′). An E-unification algorithm is

complete if for any equation t = t′ it generates a complete set of E-unifiers.

Note that this set needs not be finite. A unification algorithm is said to be

finitary and complete if it always terminates after generating a finite and

complete set of solutions. A unification algorithm is said to be minimal if it

always provides a maximal (w.r.t. vE) set of unifiers, i.e., for any two unifiers

ρ1, ρ2 ∈ CSUW
E (t = t′) such that ρ1|W 6=E ρ2|W , we have that ρ1|W 6vE ρ2|W

and ρ2|W 6vE ρ1|W .

A rewrite rule is an oriented pair l → r, where Var(r) ⊆ Var(l) and

l, r ∈ TΣ(X )s for some sort s ∈ S. An (unconditional) order-sorted rewrite

9



theory is a triple (Σ, Ax,R) with Σ an order-sorted signature, Ax a set of

Σ-equations, and R a set of rewrite rules. The rewriting relation on TΣ(X ),

written t→R t
′ or t→p,R t

′ holds between t and t′ iff there exist p ∈ PosΣ(t),

l → r ∈ R and a substitution σ, such that t|p = lσ, and t′ = t[rσ]p. The

subterm t|p is called a redex. The relation→R/Ax on TΣ(X ) is =Ax;→R; =Ax.

Note that →R/Ax on TΣ(X ) induces a relation →R/Ax on the free (Σ, Ax)-

algebra TΣ/Ax(X ) by [t]Ax →R/Ax [t′]Ax iff t →R/Ax t
′. The transitive (resp.

transitive and reflexive) closure of →R/Ax is denoted →+
R/Ax (resp. →∗R/Ax).

We say that a term t is→R/Ax-irreducible (or just R/Ax-irreducible) if there

is no term t′ such that t→R/Ax t
′.

For a rewrite rule l → r, we say that it is sort-decreasing if for each

substitution σ, we have rσ ∈ TΣ(X )s implies lσ ∈ TΣ(X )s. We say a rewrite

theory (Σ, Ax,R) is sort-decreasing if all rules in R are. For a Σ-equation

t = t′, we say that it is regular if Var(t) = Var(t′), and it is sort-preserving if

for each substitution σ, we have tσ ∈ TΣ(X )s implies t′σ ∈ TΣ(X )s and vice

versa. We say an equational theory (Σ, E) is regular, resp. sort-preserving,

if all equations in E are.

For substitutions σ, ρ and a set of variables V we define σ|V →R/Ax ρ|V
if there is x ∈ V such that xσ →R/Ax xρ and for all other y ∈ V we have

yσ =Ax yρ. A substitution σ is called R/Ax-normalized (or normalized) if

xσ is R/Ax-irreducible for all x ∈ V .

We say that the relation →R/Ax is terminating if there is no infinite se-

quence t1 →R/Ax t2 →R/Ax · · · tn →R/Ax tn+1 · · · . We say that the relation

→R/Ax is confluent if whenever t →∗R/Ax t′ and t →∗R/Ax t′′, there exists a

term t′′′ such that t′ →∗R/Ax t′′′ and t′′ →∗R/Ax t′′′. An order-sorted rewrite

theory (Σ, Ax,R) is confluent (resp. terminating) if the relation →R/Ax is

confluent (resp. terminating). In a confluent, terminating, sort-decreasing,

order-sorted rewrite theory, for each term t ∈ TΣ(X ), there is a unique (up

to Ax-equivalence) R/Ax-irreducible term t′ obtained from t by rewriting

to canonical form, which is denoted by t →!
R/Ax t

′, or t↓R/Ax when t′ is not

relevant.

10



2.1 The Maude Tool

The Maude tool [31] is a high-performance implementation of rewriting logic.

It allows equational specification in functional modules, corresponding to

equational theories (Σ, E∪Ax), and full rewrite theories R = (Σ, E∪Ax,R)

can be specified as system modules. In functional modules other modules can

be included, sorts and subsorts can be declared and operator symbols can

be defined, possibly with equational attributes (called axioms) like associa-

tivity, commutativity and/or identity. Sorts, subsorts, conditional equations

and memberships define the computations that are possible. Reasonable ex-

ecutability requirements are needed to make a module admissible (see [31],

Sections 4.6 and 6.3), including termination (modulo axioms), ground con-

fluence and sort-decreasingness. Then, Maude can execute the module by

equational simplification modulo the axioms, where the equations in E are

used as rules from left to right and Maude’s built-in matching for the axioms

Ax leads for each term t to its canonical form with a least sort. For func-

tional modules this yields an operational semantics, defined by the algebra

of canonical forms CanΣ/E∪Ax corresponding to the initial algebra semantics

given by TΣ/E∪Ax (see Sections 4.6-4.8 in [31]). Equational simplification

modulo axioms is executed by the reduce command in Maude.

In order to be admissible, a system module has to, in addition to its equa-

tional component being admissible, satisfy the ground coherence requirement

of its rules R with respect to equations in E and also needs to ensure that

all variables in rules can be instantiated by (incremental) matching. Such a

module can be executed in Maude by rewriting with the rules and oriented

equations modulo axioms Ax. This is exactly the mathematical semantics

of R. Rewrites in a system module are performed in Maude by the rewrite

command which is position-fair and rule-fair. There is also breadth-first

search available using the search command. A linear temporal logic (LTL)

model checker is built-in for safety and liveness properties.

2.2 Maude-NPA

The Maude-NPA [48] is a cryptographic protocol specification and analysis

engine based on rewriting logic and implemented in the Maude tool. It

11



supports cryptographic protocol analysis dealing explicitly with algebraic

properties. See Chapters 5 and 6 for more details.

2.3 Internet Explorer

Internet Explorer (IE) is a widely used web browser created by Microsoft.

Because of its wide adoption, IE has been a prime target for security attacks,

leading to many well-known security violations. The analysis in this thesis

has been executed on IE version 6.5 and had a substantial impact on IE

version 7. The browser is written in a monolithic style in which just about

any component can interact with any other component, and in practice does

so, mostly for historical reasons.

2.4 Illinois Browser Operating System

The Illinois Browser Operating System (IBOS) [117] is a modern, security-

conscious web browser designed at the University of Illinois and is integrated

into a secure operating system. The basic idea is to go away from the mono-

lithic approach and modularize the different processes of the browser. There

is only one truly trusted process, the kernel. All other processes, like, e.g.,

web page instances, network processes, storage, etc., are not trusted. Secu-

rity of all non-compromised components is desired, even with some compro-

mised components in the mix. For that reason, all communication has to go

through the kernel, which will allow or disallow it based on defined policies.

See Chapter 4 for more details.

12



CHAPTER 3

GUI LOGIC ANALYSIS FOR IE

This chapter is based on joint work with Shuo Chen, José Meseguer, Helen

Wang and Yi-Min Wang and has been partially published in [23]. To achieve

end-to-end security, traditional machine-to-machine security measures are in-

sufficient if the integrity of the human-computer interface is compromised.

GUI logic flaws are a category of software vulnerabilities that result from

logic bugs in GUI design/implementation. Visual spoofing attacks that ex-

ploit these flaws can lure even security conscious users to perform unintended

actions. The focus of this chapter is to formulate the problem of GUI logic

flaws and to develop a methodology for uncovering them in software im-

plementations. Specifically, based on an in-depth study of key subsets of

Internet Explorer (IE) browser source code, we have developed in [23] a for-

mal model for the browser GUI logic and have applied formal reasoning to

uncover new spoofing scenarios, including nine for status bar spoofing and

four for address bar spoofing. The IE development team has confirmed all

these scenarios and has fixed most of them in their latest build. Through

this work, we demonstrate that a crucial subset of visual spoofing vulnerabil-

ities originate from GUI logic flaws, which have a well-defined mathematical

meaning allowing a systematic analysis.

Today, the trustworthiness of the web relies on the use of machine-to-

machine security protocols (e.g., SSL or TLS) to provide authentication over

the Internet to ensure that the client software (i.e., the browser) communi-

cates with the intended server. However, such trustworthiness can be easily

shattered by the last link between the client machine and its user. Indeed,

the user-interface trust should be considered as a part of the trusted path

problem in secure communications [45, 59, 128].

The exposure of the weakness between computer and human is not lim-

ited to non-technical social engineering attacks where naive users are fooled

into clicking on an arbitrary hyperlink and download malicious executables

13



Figure 3.1: (a) Status Bar Spoofing - (b) Address Bar Spoofing

without any security awareness.

Even for a technology-savvy and security-conscious user, this last link

can be spoofed visually. As shown in Figure 3.1(a), even if a user examines

the status bar of the email client before she clicks on a hyperlink, she will

not be able to tell that the status bar is spoofed and she will navigate to an

unexpected web site, instead of https://www.paypal.com. Furthermore, as

shown in Figure 3.1(b), even if a user checks the correspondence between the

URL displayed in the browser address bar and the top level web page con-

tent, she will not realize that the address bar is spoofed and the page comes

from a malicious web site. Indeed, the combination of the email status bar

spoofing and the browser address bar spoofing can give a rather “authentic”

navigation experience to a faked PayPal page. Even SSL is not helpful - as

shown in Figure 3.1(b), the spoofed page contains a valid PayPal certificate.

Obviously, this can result in many bad consequences, such as identity theft

(e.g. phishing), malware installation, and spreading of faked news.

Visual spoofing attack is a generic term referring to any technique using

a misleading GUI to gain trust from the user. Design/implementation flaws

enabling such attacks are already a reality and have been sporadically discov-

ered in commodity browsers [18, 19, 20], including IE, Firefox, and Netscape

Navigator. This chapter focuses on a class of visual spoofing attacks that

exploit GUI logic flaws, which are bugs in the GUI’s design/implementation

that allow the attacker to present incorrect information in parts of the au-

thentic GUI that the user trusts, such as the email client status bar and

the browser address bar. Figure 3.1(a) and (b) are just two instances of

many such flaws that we discovered using the methodology described in this

chapter, which expands the ideas presented in [23].

14



A second class of visual spoofing attack, which has been extensively dis-

cussed in previous research work [37, 59, 126, 128], is to exploit graphical

similarities. These attacks exploit picture-in-picture rendering [128] (i.e., a

faked browser window drawn inside a real browser window), chromeless win-

dow (e.g., a window without the address bar or the status bar [59, 128]),

popup window covering the address bar, and symbol similarity (e.g., “1” vs.

“l”, “vv” vs. “w” [37], and non- English vs. English characters). We do not

consider such attacks in this chapter, but in Section 3.4 we briefly discuss

how the graphical similarity problems are being addressed by researchers and

browser vendors.

Our goal is to formulate the GUI logic problem and to develop a system-

atic methodology for uncovering logic flaws in GUI implementations. This is

analogous to the body of work devoted to catching software implementation

flaws, such as buffer overruns, data races, and deadlocks, through the means

of static analysis or formal methods. Nevertheless, a unique challenge in

finding GUI logic flaws is that these flaws are about what the user sees —

user’s vision and actions are integral parts of the spoofing attacks. Thus, the

modeled system should include not only the GUI logic itself, but also how

the user interacts with it.

In a nutshell, our methodology first requires mapping a visual invariant,

such as “the URL that a user navigates to must be the same as that indi-

cated on the status bar when the mouse hovers over an element in a static

HTML page”, to a well-defined program invariant, which is a Boolean con-

dition about user state and software state. This mapping is done based on

an in-depth understanding of the source code of the software. Our goal is

then to discover all possible inputs to the software which can cause the visual

invariant to be violated. In the example of finding status bar spoofing scenar-

ios, we want to discover all HTML document tree structures that can cause

the inconsistency between the URL indicated on the status bar and the URL

that the browser is navigating to upon a click event; the resulting HTML

tree structures can be used to craft instances of status bar spoofing attacks.

To systematically derive these scenarios, we employ a formal reasoning tool

to reason about the well-defined program invariant.

The methodology is applied to discover two classes of important GUI

logic flaws in IE. The first class is the static-HTML-based status-bar spoof-

ing. Flaws of this class are critical because static-HTML pages (i.e., pages

15



without scripts) are considered safe to be rendered in email clients (e.g., Out-

look1 and Outlook Express) and to be hosted on blogging sites and social

networking sites (e.g., myspace.com), and the status bar is the only trust-

worthy information source for the user to see the target of a hyperlink. The

second class of flaws we studied is address bar spoofing, which allows a ma-

licious web site to hide its true URL and pretend to be a benign site. In

both case studies, we use the Maude formal reasoning tool [29] to derive

these spoofing scenarios, taking as input the browser GUI logic, program

invariants, and user actions.

We have discovered nine canonical HTML tree structures leading to status

bar spoofing and four scenarios of address bar spoofing. The IE development

team has confirmed these scenarios and fixed eleven of them in the latest

build, and scheduled to fix the remaining two in the next version. In addition

to finding these flaws, we made the interesting observation that many classic

programming errors, such as semantic composition errors, atomicity errors

and race conditions are also manifested in the context of GUI implemen-

tation. More importantly, this chapter demonstrates that GUI logic flaws

can be expressed in well-defined Boolean invariants, so that finding these

flaws can be done by exhaustively searching for violations of the Boolean

invariants.

The rest of the chapter is organized as follows. Section 3.1 gives an

overview of our methodology. Sections 3.2 and 3.3 present case studies on

status bar spoofing and address bar spoofing with IE. Section 3.4 discusses

issues related to GUI security. Related work is discussed in Section 3.5.

3.1 Overview of Our Methodology

Figure 3.2 gives a big picture overview of our approach, based on formal

analysis techniques. Existing formal analysis techniques have been success-

fully applied to reasoning about program invariants, e.g., the impossibility of

buffer overrun in a program, guaranteed mutual exclusion in an algorithm,

deadlock freedom in a concurrent system, secrecy in a cryptographic proto-

1Outlook does not show the target URL on the status bar, but on a small yellow tooltip
near the mouse cursor. Because IE, Outlook and Outlook Express use the same HTML
engine, most status bar spoofing scenarios can be transformed to email format to spoof
Outlook tooltip and Outlook Express status bar.

16



Figure 3.2: Overview of Our Methodology

col, and so on. These program invariants have well-defined mathematical

meaning. Uncovering GUI logic flaws, on the other hand, requires reasoning

about what the user sees. The “invariant” in the user’s vision does not have

an immediately obvious mathematical meaning. For example, the visual in-

variant of the status bar is that if the user sees foo.com on the status bar

before a mouse click, then the click must navigate to the foo.com page. It is

important to map such a visual invariant to a program invariant in order to

apply formal reasoning, which is shown as step (a) in Figure 3.2.

The mapping between a visual invariant and a program invariant is de-

termined by the logic of the GUI implementation, e.g., a browser’s logic for

mouse handling and page loading. An in-depth understanding of the logic is

crucial in deriving the program invariant. Towards this goal, we conducted

an extensive study of the source code of the IE browser to extract pseudo

code to capture the logic (shown as step (b)) which was then specified as

a rewrite theory in Maude. In addition, we needed to explicitly specify the

“system state” (shown as step (c)), including both the browser’s internal

state and possibly what the user memorizes. Steps (d) and (e) depict the

formalization of the user’s action sequence and the execution context as the

inputs to the program logic. The user’s action sequence is an important com-

ponent in the GUI logic problem. For example, the user may move and click

the mouse, or open a new page. Each action can change the system state.

To capture this we need to make an abstraction of the user’s capabilities as

17



well as be exhaustive w.r.t. the remaining possible user action combinations.

Another input to specify is the execution context of the system, e.g., a web

page is an execution context for the mouse handling logic — the same logic

and the same user action, when executed on different web pages, can produce

different results. Again some abstraction and then exhaustive generation is

required.

When the user action sequence, the execution context, the program logic,

the system state and the program invariant are formally specified on the

reasoning engine, formal reasoning is performed to check if the user action

sequence applied to the system running in the execution context violates

the program invariant. Each discovered violation is output as a potential

spoofing scenario, which consists of the user action sequence, the execution

context and the inference steps leading to the violation. Finally, we manually

map each potential spoofing scenario back to a real-world scenario (shown

as step (f)). This involves an effort to construct a malicious web page that

sets up the execution context and lures the user to perform the actions. The

mappings (a)(b)(f) between the real world and the formal model are currently

done manually, some of which require significant effort. In this chapter, our

contribution is mainly to formalize the GUI logic problem. Reducing the

manual effort is future work.

3.2 Case Study 1: Status Bar Spoofing Based on

Static HTML

Many web attacks, such as browser buffer overruns, cross-site scripting at-

tacks, browser crossframe attacks and phishing attacks, require the user to

navigate to a malicious URL. Therefore, it is important for the user to know

the target URL of a navigation, which is displayed on the status bar before

the user clicks the mouse. Status bar spoofing is damaging if it can be con-

structed using only static HTML (i.e., without any active content such as

JavaScript), because: (i) email clients, e.g., Outlook and Outlook Express,

render static HTML contents only, and email is an important media to prop-

agate malicious messages; (ii) blogging sites and social networking sites (e.g.,

myspace.com) usually sanitize user-posted contents to remove scripts, but

18



Figure 3.3: DOM Tree and Layout of an HTML Page

allow static HTML contents.2

3.2.1 Background: Representation and Layout of an HTML
Page

Background knowledge about HTML representation is a prerequisite for this

case study. We give a brief tutorial here. An HTML page is represented

as a tree structure, namely a Document Object Model tree, or DOM tree.

Figure 3.3 shows an HTML source file, its DOM tree, and the layout of

the page. The mapping from the source file (Figure 3.3(a)) to the DOM

tree (Figure 3.3(c)) is straightforward — element A enclosing element B is

represented by A being the parent of B in the DOM tree. The tree root is

a <html> element, which has a <head> subtree and a <body> subtree. The

<body> subtree is rendered in the browser’s content area. Since status bar

spoof is caused by user interactions with the content area, we focus on the

<body> subtree in this case study.

2A status bar spoof using a script is not a major security concern — it gets into a
chicken-and-egg situation: a well-known site does not run an arbitrary script supplied
from an arbitrary source. If the victim user has already been lured to a malicious site, the
goal of the spoofing has been achieved.

19



Figure 3.3(b) shows the layouts of elements from the user’s viewpoint.

In general, parent elements have larger layouts to contain children elements.

Conceptually, these elements are stacked upwards (toward the user), with

<body> sitting at the bottom (see Figure 3.3(d)). In HTML, <a> represents

an anchor, and <img> represents an image.

3.2.2 Program Logic of Mouse Handling and Status Bar
Behavior

Mouse handling logic plays an important role in status bar spoofs. We ex-

tracted the logic from the IE source code. It is presented here using pseudo

code, which will be formalized into a rewrite theory in Section 3.2.3.

Central Logic

The mouse device can generate several raw messages. When a user moves

the mouse onto an element and clicks on it, the sequence of raw messages

consists of several MOUSEMOVEs, an LBUTTONDOWN (i.e., left button

down), and then a LBUTTONUP (i.e., left button up).

The core functions for mouse handling are called OnMouseMessage and

SendMsgToElem, which dispatch mouse messages to appropriate elements.

Every element has its specific virtual functions HandleMessage, DoClick

and ClickAction to implement the element’s behaviors.

Each raw mouse message invokes an OnMouseMessage call (pseudo code

shown in Table 3.1). The parameter element is the HTML element that is

immediately under the mouse cursor. The parameter message is the type

of the message, which can be either MOUSEMOVE, or LBUTTONDOWN,

or LBUTTONUP. An OnMouseMessage call can potentially send three mes-

sages to HTML elements in the DOM tree: (i) if element is different from

elementLastMouseOver, which is the element immediately under the mouse

in the most recent OnMouseMessage call, then a MOUSELEAVE message is

sent to elementLastMouseOver; (ii) the raw message itself (i.e., message) is

sent to element; (iii) if element is different from elementLastMouseOver, a

MOUSEOVER message is sent to element.

In the function SendMsgToElem(), btn is the closest Button ancestor

of element. If btn exists and message is LBUTTONUP (i.e., a click),

20



OnMouseMessage(x,y,message) {

element=HitTestPoint(x,y)

if (element!= elementLastMouseOver)

PumpMessage(MOUSELEAVE, elementLastMouseOver)

PumpMessage(message, element)

if (element!= elementLastMouseOver)

PumpMessage(MOUSEOVER, element)

elementLastMouseOver = element

}

PumpMessage(message,element) {

if (message != LBUTTONUP)

element->FireJavaScriptNonClick(message)

loopElement=element

repeat

BubbleCanceled =

loopElement->HandleMessage(message)

loopElement = loopElement->parent

until BubbleCanceled or loopElement is the root

if (message == LBUTTONUP)

element->DoClick() //handle mouse single click

}

Table 3.1: OnMouseMessage and SendMsgToElem

21



then element becomes the button btn. It essentially means that any click

on a descendant of a button is treated as a click on the button. Then, a

message bubbling loop begins - starting from element, the virtual function

HandleMessage of every element along the DOM tree path is invoked. Each

HandleMessage call can cancel or continue the bubble (i.e., break out of or

continue the loop) by setting a Boolean BubbleCanceled. After the bub-

bling loop, a mouse click is handled by calling the virtual function DoClick

of element, when message is LBUTTONUP.

HTML Element Behaviors

An object class is implemented for each type of HTML element, such as

Anchor, Form, Button, InputField, Label, Image, etc. These object classes

inherit from the AbstractElement base class. The three virtual functions

of AbstractElement, namely, HandleMessage, DoClick and ClickAction,

implement default behaviors of real HTML elements. Function DoClick of

AbstractElement, written AbstractElement::DoClick, implements a loop

to invoke ClickAction of each element along the DOM tree path, similar

to the bubbling in SendMsgToElem. HandleMessage and ClickAction of

AbstractElement are basically “placeholders” - they simply return in order

to continue the bubble.

Each HTML element class can override these virtual functions given

in AbstractElement to implement its specific behaviors. A subset of vir-

tual functions of the Anchor, Label and Image elements is shown in Ta-

ble 3.2. These examples demonstrate the complexity of the mouse han-

dling logic due to the intrinsic behavioral diversity of individual elements

and the possible compositions. For example, when the mouse is over an

anchor, the target URL of this anchor will be displayed on the status

bar by calling SetStatusBar, and the bubble continues, as indicated in

Anchor::HandleMessage. When an anchor is clicked, FollowHyperlink

is called to jump to the target URL, and the bubble is canceled, as indi-

cated in Anchor::ClickAction. When the mouse is over a label, there is no

SetStatusBar call, and the bubble is canceled. According to the HTML

specification, a label can be associated with another element in the page,

which is called “ForElement”. Clicking on the label is equivalent to clicking

on ForElement, as shown in Label::ClickAction. An image element can

22



Table 3.2: Virtual Functions of Anchor, Label and Image Elements

Bool Anchor::HandleMessage(message) {

switch (message)

case LBUTTONDOWN

or LBUTTONUP:

return true; //cancel bubble

case MOUSEOVER:

SetStatusBar(targetURL)

return false; //continue bubble

Other:

return false;

}

Bool Anchor::ClickAction() {

FollowHyperlink(targetURL);

return true; // cancel bubble

}

Bool Label::HandleMessage(message) {

switch (message)

case MOUSEOVER

or MOUSELEAVE:

return true; //cancel bubble

Other:

return false;

}

Bool Label::ClickAction() {

forElement = GetForElement()

if (forElement != NULL)

forElement->DoClick();

return true;

}

Bool Image::HandleMessage(message) {

if a map is associated with this image

MapTarget = GetTargetFromMap();

switch (message)

case MOUSEOVER:

SetStatusBar(MapTarget)

return true;

}

Bool Image::ClickAction() {

if a Map is associated with this image

MapTarget = GetTargetFromMap();

FollowHyperlink(MapTarget);

else pAnchor=GetContainingAnchor();

pAnchor->ClickAction();

return true;

}

be associated with a map, which associates different screen regions on the

image with different target URLs. When the mouse is over a region, the URL

of the region is set to the status bar, as indicated in Image::HandleMessage.

When the mouse clicks on the region, a FollowHyperlink call is made, as

indicated in Image::ClickAction. If an image is not associated with a map,

then the URL of the containing anchor of the image (i.e., the closest ancestor

anchor of the image on the DOM) determines the status bar text and the

hyperlink to follow.

23



Figure 3.4: Function Level View of Status Bar Spoof

3.2.3 Formalization of Status Bar Spoofing

The visual invariant of the status bar is intuitively that the target URL of

a click must be identical to the URL displayed on the status bar when the

user stops the mouse movement. The negation of this invariant defines a

spoofing scenario (Figure 3.4): First, MOUSEMOVE messages on elements

O1, O2, ..., On invoke a sequence of OnMouseMessage calls. When the mouse

stops moving, the user inspects the status bar and memorizes benignURL.

Then, a LBUTTONDOWN and a LBUTTONUP message are received, re-

sulting in a FollowHyperlink(maliciousURL) call, where maliciousURL is

different from benignURL.

We now apply the approach described in Figure 3.2.

(1) Specifying system state and state transitions (Step (c) in Figure 3.2).

System State includes the browser state statusBar and the user state

memorizedURL. State transitions are triggered by the SetStatusBar action

and the user’s Inspection action as below, where AL is an arbitrary action

list.

op Inspection : -> Action .

op SetStatusBar : URL -> Action .

vars AL : ActionList . vars Url Url’ : URL .

rl [SetStatusBar(Url) ; AL ] statusBar(Url’)

=> [AL] statusBar(Url) .

rl [Inspection ; AL] statusBar(Url) memorizedURL(Url’)

=> [AL] statusBar(Url) memorizedURL(Url) .

The first rule specifies the semantics of SetStatusBar(Url): if the cur-

rent action list starts with a SetStatusBar(Url) action, and the status bar

displays Url’, then after this action is completed, it disappears from the

action list, and the status bar is updated to Url. The second rule specifies

the Inspection action: if statusBar displays Url, the memorizedURL is an

arbitrary value Url’, and the action list starts with Inspection, then after

24



Table 3.3: Rules to specify HandleMessage and ClickAction of Anchor

ceq [AnchorHandleMessage(O,M) ; AL] *** equation 1

= [cancelBubble ; AL]

if M == LBUTTONUP or M == LBUTTONDOWN .

crl [AnchorHandleMessage(O,M); AL] <O |targetURL: Url , ...>

=> [SetStatusBar(Url) ; AL] < O | targetURL: Url , ...>

if M == MOUSEOVER . *** rule 2

ceq [AnchorHandleMessage(O,M) ; AL] *** equation 3

= [no-op ; AL]

if M == LBUTTONUP, LBUTTONDOWN or MOUSEOVER .

crl [AnchorClickAction(O) ; AL] < O | targetURL: Url , ... >

=> [FollowHyperlink(Url) ; cancelBubble ; AL]

< O | targetURL: Url , ... > . *** rule 4

the inspection is made, Inspection disappears from the action list, and the

URL on the status bar is copied to the user’s memory, i.e., memorizedURL.

(2) Modeling the program logic (Step (b) in Figure 3.2). Modeling the

functions shown in Table 3.1 and Table 3.2 is straightforward using Maude,

e.g., HandleMessage and ClickAction of the Anchor element are specified

in Table 3.3. Other functions are modeled in a similar manner.

It is easy to verify that these rules and equations indeed faithfully specify

the behaviors of an anchor shown in Table 3.1: Equation 1 specifies that

if an action list starts with an AnchorHandleMessage(M,O) action, this ac-

tion should rewrite to a cancelBubble, if M is LBUTTONUP or LBUTTONDOWN.

Rule 2 specifies that AnchorHandleMessage(M,O) should indeed rewrite to

SetStatusBar(Url) when handling MOUSEOVER, where Url is the target URL

of the anchor. For any other type of message M, AnchorHandleMessage(M,O)

should rewrite to no-op to continue the bubble, which is specified by equa-

tion 3. Rule 4 rewrites AnchorClickAction (O) to the concatenation of

FollowHyperlink (Url) and cancelBubble, where Url is the target URL

of the anchor.

(3) Specifying the program invariant (Step (a) in Figure 3.2). A key

question is how to define the negation of the program invariant to find status

bar spoofs. It is specified as the pattern searched for in the search command:

ops maliciousUrl benignUrl empty : URL .

vars O1 O2 : Element . var Url : URL . var AL : ActionList .

25



search CanonicalActionSeq(O1,O2) ExecutionContext

statusBar(empty) memorizedUrl(empty)

=>! [FollowHyperlink(maliciousUrl) ; AL]

statusBar(Url) memorizedUrl(benignUrl) X:StateMultiSet .

The command gives a well-defined mathematical meaning to status bar

spoofing scenarios: “the Maude initial term CanonicalActionSeq(O1,O2)

ExecutionContext statusBar(empty) memorizedUrl(empty) can be

rewritten to the term [FollowHyperlink (maliciousUrl) ; AL]

statusBar(Url) memorizedUrl(benignUrl), which indicates that the user

memorizes benignURL, but FollowHyperlink(maliciousUrl) is the next

action to be performed by the browser”.

Before going to the results there are two more things that we need to

discuss. The CanonicalActionSeq(O1,O2) above is the representation of

the generation of the user input, and ExecutionContext is the simplified

representation of the execution context currently considered. As such, in

some reading, both of these are not part of the state space exploration, but

rather they generate a (set of) initial states for that exploration.

(4) Specifying the user action sequence and the execution context (Steps

(d) and (e) in Figure 3.2). A challenging question is how the spoofing pos-

sibilities can be systematically explored, given that the web page can be

arbitrarily complex and the user’s action sequence can be arbitrarily long.

Canonicalization is a common form of abstraction used in formal reasoning

practice to handle a complex problem space. For this particular problem,

our goal is to map a set of user action sequences to a single canonical action

sequence, and map a set of web pages to a single canonical DOM tree. Be-

cause any instance in the original problem space only trivially differs from

its canonical form, we only need to explore the canonical state space to find

all “representative” instances.

(4.1) Canonicalization of the user action sequence. In general the user

action sequence consists of a number of mouse moves, followed by a status bar

inspection, followed by a mouse click (button down and up). In a canonical

action sequence, the number of mouse moves can be reduced to two. This

is because, although each MOUSEMOVE can potentially update the status

bar, the status bar is a memoryless object, which means: (i) upon every

mouse action, how to update the status bar does not depend on any previous

update, but only on the DOM tree branch corresponding to the current

26



mouse coordinates; (ii) the whole sequence of status bar updates is equivalent

to the last update. Thus, a canonical action sequence from element O1 to

element O2 can be represented by the equation below, where the semicolon

denotes sequential composition, and the MOUSEOVER on O1 invokes the

last update of the status bar before the mouse arrives at O2 (O1 and O2 can

be identical).

op CanonicalActionSeq: Element Element -> ActionList .

eq CanonicalActionSeq (O1,O2)

= [ onMouseMessage(O1,MOUSEMOVE) ;

onMouseMessage(O2,MOUSEMOVE) ;

Inspection ;

onMouseMessage(O2,LBUTTONDOWN);

onMouseMessage(O2,LBUTTONUP) ] .

Note here that we use an equation instead of a rule. The difference

between these is that an equation specifies a functional computation while a

rule specifies a (possibly nondeterministic) state transition.

(4.2) Canonicalization of the execution context (i.e., DOM trees). In gen-

eral a DOM tree may have arbitrarily many branches, but we can restrict the

number of branches of a canonical DOM tree to at most two. This is because

the canonical action sequence contains at most two MOUSEMOVEs — the

third branch of the DOM tree would be superfluous as it would not receive

any mouse message. Each HTML element in the DOM tree is represented

as an object with a unique identifier, a class, a parent attribute (specifying

the DOM tree structure) and possibly other attributes. We currently model

Anchor, Button, Form, Image, InputField and Label element classes, plus

a Body element always at the root. For example, the term

< O | class:anchor, parent:O’ >

represents anchor element O whose parent is O’. Our analysis is restricted to

canonical DOM trees of bounded size but sufficiently rich to uncover useful

scenarios.

We have analyzed all one- and two-branch DOM trees with at most six

elements. At the level of most elements in this analysis all resulting spoofs

were instances of simpler, smaller examples already. Also, keep in mind

there are only seven HTML elements being modeled, and we also specify the

generation rules so that all canonical DOM trees satisfy the required HTML

wellformedness restrictions. E.g., an anchor cannot be embedded in another

27



Figure 3.5: Illustration of Scenario 1

anchor, an InputField can only be a leaf node, etc. The generation of all

these initial canonical execution contexts is done in the tool as part of the

search command shown above. Combined with the generation of canonical

user action sequences, one for each possible movement, i.e., one for each pair

of HTML elements, this initial state space generation creates the starting

point from which the execution of our model runs.

3.2.4 Scenarios Suggested by the Results

The scenarios are found by running the above-mentioned search command

which first generates the execution context and action sequence and then

executes the resulting system to completion.

We found nine combinations of canonical DOM trees and user action

sequences that resulted in violations of the program invariant. All were

due to unintended compositions of multiple HTML elements features. This

section presents four representative scenarios in detail.

Shown in Figure 3.5, Scenario 1 has an InputField embedded in an

anchor, and the anchor is embedded in a form.

When the mouse is over the InputField, the HandleMessage of each

element is called to handle the MOUSEOVER message that bubbles up to

the DOM tree root. Only the anchor’s HandleMessage writes its target

URL paypal.com to the status bar, but when the InputField is clicked,

its ClickAction method retrieves the target URL from the form element,

which is foo.com. This scenario indicates the flaw in message bubbling —

the MOUSEOVER bubbles up to the anchor, but the click is directly passed

from the InputField to the form, skipping the anchor.

Scenario 2 (Figure 3.6) is very different from Scenario 1: an img (i.e.,

image) associated with a map ppl is on top of a button. The target URL

of ppl is set to paypal.com. When img gets a MOUSEOVER, it sets the

status bar to paypal.com and cancels the bubble. When the mouse is clicked

28



Figure 3.6: Illustration of Scenario 2

Figure 3.7: Illustration of (a) Scenario 3 and (b) Scenario 4

on img, because img is a child of button, the click is treated as a click on

the button, according to the implementation of SendMsgToElem(). The

button click, of course, leads to a navigation to foo.com. This scenario

indicates a design flaw — an element (e.g., button) can hijack the click from

its child, but it does not hijack the MOUSEOVER message, and thus causes

the inconsistency.

Scenario 3 contains a label embedded in an anchor (Figure 3.7(a)). When

the mouse is moved toward the label, it must first pass over the anchor,

and thus sets paypal.com on the status bar. When the label is clicked, the

page is navigated to foo.com, because the label is associated with an anchor

of foo.com. An opposite scenario shown as scenario 4 in Figure 3.7(b) seems

more surprising, which suggests an outward mouse movement from a child

to a parent. Such a movement makes it feasible to spoof the status bar using

an img sitting on top of a label. Note that, because HTML syntax only

allows an img to be a leaf node, such an outward mouse movement, which is

suggested by the Maude analysis, is critical in the spoofing attack.

We also derived several scenarios with two-branch DOM trees. They

demonstrate the varieties of DOM trees and layout arrangements that can

be utilized in spoofing, e.g., a spoof page places the two leafs side-by-side,

another page uses Cascading Style Sheets (CSS) [97] to set element positions,

etc.

29



3.3 Case Study 2: Address Bar Spoofing

Address bar spoofing is another category of spoofing attack. It fools users

into trusting the current page when it comes from an untrusted source. The

combination of a status bar spoofing and an address bar spoofing gives an

end-to-end scenario to hide the identity of the malicious site, and thus is a

serious security threat. In this section, we first introduce the background

knowledge about the address bar logic, then present the Maude-based anal-

ysis technique and real spoofing scenarios uncovered by the analysis.

3.3.1 Background: Address Bar Basics

An IE process can create multiple browsers. Each one is implemented as

a thread. A browser, built on the OLE framework [98], is a container (in-

cluding the title bar, the address bar, the status bar, etc) hosting a client

document in the content area. Many types of client documents can be hosted

in IE, such as HTML, Microsoft Word, Macromedia Flash and PDF. The ob-

ject used to represent an HTML document is called a renderer. A renderer

can host multiple frames, each displaying an HTML page downloaded from

a URL.

An HTML page is stored as a markup data structure. A markup consists

of the URL and the DOM tree of the content from the URL. The top level

frame, i.e., the one associated with the entire content area, is called the

primaryFrame of the renderer. Figure 3.8 shows a browser displaying a page

from http://MySite. The renderer has three frames - PrimaryFrame from

MySite, Frame1 from PayPal.com and Frame2 from MSN.com. Each frame

is associated with a current markup and, at the navigation time, a pending

markup. Upon navigation completion, the pending markup is switched in

and becomes the current markup.

Informally, the program invariant of the address bar correctness is that:

(1) the content area is rendered according to the current markup of prima-

ryFrame; and (2) the URL on the address bar is the URL of the current

markup of primaryFrame. In the example shown in Figure 3.8, the address

bar should display “http://MySite”.

30



Figure 3.8: Browser, Renderer, Frames and Markups

3.3.2 Overview of the HTML Navigation Logic

HTML navigation consists of multiple tasks — loading HTML content, switch-

ing markup, completing navigation and rendering the page. A renderer has

an event queue to schedule these tasks. The event queue is a crucial mecha-

nism for handling events asynchronously, so that the browser is not blocked

to wait for the completion of the entire navigation. We studied three types

of navigation: (1) loading a page into the current renderer ; (2) traveling in

the history of the current renderer ; and (3) opening a page in a new ren-

derer. Due to space constraints, Figure 3.9 only illustrates a small subset of

functions involved in the navigations.

Figure 3.9(a) shows the event sequence of loading a page in the cur-

rent renderer. It is initiated by a FollowHyperlink, which posts a start

navigation event. Function PostMan is responsible for downloading the

new HTML content to a pending markup. Event ready is posted to invoke

SetInteractive, to make the downloaded contents effective.

SetInteractive first invokes SwitchMarkup to replace the current markup

with the pending markup, and calls NavigationComplete. If the downloaded

markup belongs to primaryFrame, function SetAddressBar is invoked to up-

date its address bar. An Ensure event is posted by SwitchMarkup, which

invokes EnsureView to construct a View structure containing element lay-

outs derived from the current markup of primaryFrame. The OS periodically

posts an OnPaint event to paint the content area by calling RenderView. Fig-

ure 3.9(b) shows the event sequence of a history travel. History Back and

Travel look up a history log to initialize the navigation. PostMan, in this

case, loads HTML contents from a persistent storage in the hard disk, rather

31



Figure 3.9: Logic of HTML Navigations

than from the Internet. The remaining portion of the sequence is similar to

that of Figure 3.9(a).

Figure 3.9(c) shows the event sequence of loading a new page into a new

renderer. WindowOpen is the starting point. It calls the method

CreatePendingDocObject to create a new renderer and then calls

SetClientSite. SetClientSite prepares a number of Boolean flags as

the properties of the new renderer, and calls InitDocHost to associate the

renderer with the browser (i.e., the container). The new renderer at this

moment is still empty. The start-loading event invokes LoadDocument

which first calls SetAddressBar to set the address bar and then calls Load

which calls LoadFromInfo. CreateMarkup and SwitchMarkup are called from

LoadFromInfo before posting a download-content event to download the

actual content for the newly created markup. Function PostMan does the

downloading as above. The remainder of the sequence is similar to both

prior sequences.

32



3.3.3 Formalization of the Navigations and the Address Bar
Behavior

(1) Modeling the system state (Step (c) in Figure 3.2). Because an address

bar spoofing is by definition the inconsistency between the address bar and

the content area of the same browser, “spoofability” is a property of the

logic of a single browser. This does not mean that only one browser is

allowed in a spoofing scenario — there can be other browsers that create a

hostile execution context to trigger a logic flaw in one particular browser.

Nevertheless, we only need to model the system as one browser and prove its

logical correctness (or uncover its flaws), and treat the overall effect of other

browsers as the context of this browser.

The system state of a browser includes the URL displayed in the ad-

dress bar, the URL of the View in the content area, a travel log and the

primary frame. The Maude specification defines a set of Frames and a set of

Markups. For example, if Markup m1 is downloaded from URL u1, and it is

the currentMarkup of Frame f1, we specify f1 and u1 as:

<f1 | currentMarkup: m1, pendingMarkup: ...>

<m1 | URL: u1, frame: f1, ...>

The system state also includes a function call queue and an event queue.

The function call queue is denoted as [call1 ; call2 ; ... ; calln],

and the event queue is denoted as {event1 ; eventn ; ... ; eventn}.
(2) Specifying the user action sequence (Step (d) in Figure 3.2). In the

scenario of an address bar spoofing, the user’s only action is to access an un-

trusted HTML page. The page contains a JavaScript calling navigation func-

tions FollowHyperlink, HistoryBack and/or WindowOpen. The behavior of

the JavaScript is modeled by a rule that conditionally appends a navigation

call to the function list. As explained in Figure 3.9, each navigation call gen-

erates a sequence of events. It is guaranteed that all possible interleavings of

event sequences are exhaustively searched, because Maude explores all viable

rewrite orders.

(3) Specifying the execution context (Step (e) in Figure 3.2). Many

Boolean conditions affect the execution path, e.g., conditions to return from

a function and conditions to create a new frame. These conditions consti-

tute the execution context of the system. We defined rules to explore both

33



Table 3.4: Pseudo Code and Rewrite Rule of SetInteractive

Pseudo Code

MARKUP::SetInteractive() {

if (BOOLEXP1) return;

this->frame->SwitchMarkup(this);

if (BOOLEXP2) NavigationComplete(frame)

}

Rewrite Rule to Specify SetInteractive

var F : Frame . var M : Markup . var FQ : FunctionQueue .

rl [SetInteractive(M) ; FQ] < M | frame : F , ... >

=> [(if BOOLEXP1 != true

then SwitchMarkup(M,F) else noop fi) ;

(if BOOLEXP2 == true

then NavigationComplete(F) else noop fi) ; FQ]

< M | frame: F , ... > .

possible paths depending on the true and false values of these conditions.

Therefore the search command explores both paths at each branch in the

pseudo code. The assignments of the Boolean conditions, combined with the

function call sequence, constitute a potential spoofing scenario. These may

include false positive scenarios, in the sense that such Boolean values cannot

at the same time be attained by different variables, and thus, as shown in

Figure 3.2, mapping a potential scenario back to the real-world is important.

It is a manual effort guided by the formally derived potential scenarios. We

discuss this in Section 3.3.4.

(4) Modeling Function Calls and Events (Step (b) in Figure 3.2). There

are three types of actions shown in Figure 3.9: calling a function, invok-

ing an event handler and posting an event. A function call is implemented

as a term substitution in the function call queue. For example, the func-

tion call SetInteractive is specified by the following rule in Table 3.4,

where F is the frame of Markup M, and SetInteractive(F) can condi-

tionally rewrite to SwitchMarkup(M,F) (if BOOLEXP1 is false) followed by

NavigationComplete(F) (if BOOLEXP2 is true).

Posting of an event happens by appending the event to the event queue,

for example, FollowHyperlink is specified by removing itself from the func-

tion queue and adding a startNavigation event to the end of the event queue.

34



var U : Url . var F : Frame .

var FQ : FunctionQueue . var EQ : EventQueue .

rl [FollowHyperlink(U, F) ; FQ] { EQ }

=> [FQ] { EQ ; startNavigation(U, F) } .

The third type of action is the invocation of an event handler. Any event

can only be invoked when its previous event handler returns. To model this

restriction, any rule of an event handler invocation specifies that the first

event in the event queue can be dequeued and translated into a function

call only when the function queue is empty. Below is the rule to specify the

handling of the ready event, which invokes the handler SetInteractive.

var EQ : EventQueue .

rl [empty] { ready(M) ; EQ }

=> [SetInteractive(M)] { EQ } .

5) Specifying the program invariant of address bar correctness (Step (a)

in Figure 3.2). A good state is a state where the URL on the address bar

matches the URL of the View and is also the URL of the content that is

painted on the screen. In addition to that, the URL is the URL of the

currentMarkup of the primaryFrame. Therefore the program invariant is

defined by the following goodState predicate:

var U: URL . var F : Frame . var M : Markup .

equation goodState (addressBar(U) urlOfView(U)

urlPaintedOnScreen(U) primaryFrame(F)

< F | currentMarkup: M , ...> < M | url: U , ...>)

= true .

It is also important to specify the initial state for the search command.

In the initial state, both the event queue and the function call queue are

empty. The primaryFrame is f1. The currentMarkup of f1 is m0. The

pendingMarkup of f1 is uninitialized. m0 is downloaded from URL0. The

address bar displays URL0, the View is derived from URL0, and the View is

painted on the screen. The following equation specifies initialState:

const f1:Frame m0:Markup url0:URL empty:EventQueue

equation initialState

= { empty } [ empty ] primaryFrame(f1)

< f1 | currentMarkup: m0 , pendingMarkup: nil >

< m0 | url: url0 , frame: f1 > addressBar(url0)

urlOfView(url0) urlPaintedOnScreen(url0) .

35



3.3.4 Uncovered Spoofing Scenarios

We used Maude’s search command to find all execution paths in the model

that start with the initial state and finish in a bad state (i.e., denoted as “not

goodState” in Maude). The search was performed on two navigations, i.e.,

two FollowHyperlinks, two History Backs, one FollowHyperlink with one

History Back, and one WindowOpen with one FollowHyperlink. The gener-

ation of the states to be explored is done by the search command at runtime.

Whenever a condition could influence which path to take, we did not model

the condition’s value explicitly, but rather had two rules, one for each pos-

sible value of the condition, and then looking at the execution trace allowed

us to identify the rule being used (note all rules are labeled) and thus which

value the condition should have.

Each condition shown in Table 3.5 is present in at least one execution

context of a potential spoofing scenario uncovered by Maude. Some func-

tion names in the Location column were not shown in Figure 3.9, because

Figure 3.9 only shows a sketch of the logic of navigation, while the actual

model we implemented is more detailed (see Appendix A). The search result

in Table 3.5 provides a roadmap for a systematic investigation: (1) we have

verified that when each of these conditions is manually set to true in the cor-

responding location using a debugger, the real IE executable will be forced

to take an execution path leading to a stable bad state; therefore, our in-

vestigation should be focused on these conditions; (2) many other conditions

present in the pseudo code are not in Table 3.5, such as those conditions in

SwitchMarkup, LoadHistory and CreateRenderer, therefore these functions

do not need further investigation.

The versions in our study are IE 6 and IE 7 Beta 1 through Beta 3. In

the rest of this section, we will focus on conditions No. 2, 9, 11 and 18,

for which we have succeeded in constructing real spoofing scenarios. For the

other conditions, we have not found successful scenarios to make them real

without the debugger. They may be false positives due to the fact that our

model does not include the complete logic of updating and correlating these

conditions, but simply assumes that each condition can be true or false at

any point during the execution. In this sense, our address bar modeling is

not exact (too permissive). Because of the imprecision in modeling these

Boolean conditions, we need a considerable amount of effort to understand

36



Table 3.5: Conditions of Potential Spoofing Scenarios
Location Condition

1 FireNavigationComplete GetHTMLWinUrl() = NULL
2 FireNavigationComplete GetPFD(bstrUrl) = NULL
3 FireNavigationComplete ActivatedView = true
4 NavigationComplete DontFireEvents = true
5 NavigationComplete DocInPP = true
6 NavigationComplete ViewWOC = true
7 NavigationComplete ObjectTG = true
8 NavigationComplete CreateDFU = true
9 SetAddressBar CurrentUrl = NULL

10 SetClientSite QIClassID()= OK
11 LoadHistory HTMLDoc = NULL
12 CreateMarkup NewMarkup = NULL
13 SetInteractive pPWindowPrxy = NULL
14 SetInteractive IsPassivating = true or

IsPassivated = true
15 SetInteractive HtmCtx() = NULL
16 SetInteractive HtmCtx()→BindResult = OK
17 EnsureView IsActive() = false
18 RenderView RSFC = NULL

their semantics. Constructing successful scenarios is still a non-trivial “secu-

rity hacking” task. Nevertheless, Table 3.5 provides a valuable roadmap to

narrow down our investigations.

Scenarios based on condition 2 and condition 9 (silent-return

conditions). For ease of presentation, we assume there is a malicious site

http://evil (or https://evil) in this section. The function call traces as-

sociated with condition 2 (i.e. GetPFD(url)= NULL in

FireNavigationComplete) and condition 9 (i.e. CurrentURL = NULL in

SetAddressBar) indicate similar spoofing scenarios: there are silent-return

conditions along the call stack of the address bar update. If any one of

these conditions is true, the address bar will remain unchanged, but the con-

tent area will be updated. Therefore, if the script first loads paypal.com

and then loads http://evil to trigger such a condition, the user will see

“http://paypal.com” on the address bar whereas the content area is from

http://evil.

We found that both condition 2 and condition 9 can be true when the

URL of the page has certain special formats. In each case, the function

37



Figure 3.10: Spoofing Scenario Due to a Race Condition

(i.e., FireNavigationComplete or SetAddressBar) cannot handle the spe-

cial URL, but instead of asserting the failure condition, the function silently

returns when the condition is encountered. For condition 9, we observed that

all versions of IE are susceptible; for condition 2, only IE 7 Beta 1 is suscepti-

ble, in which case even the SSL certificate of PayPal is present with the faked

page, because the certificate stays with the address bar. In other versions of

IE, although they have exactly the same silent-returning statement, condi-

tion 2 cannot be triggered because the special URL has been modified at an

earlier stage during the execution before GetPFD is called. However, even for

these seemingly unaffected versions, having the silent-returning condition is

still problematic — IE must guarantee that such a condition can never be

true in order to prevent the spoofing.

These two examples demonstrate a new challenge in graphical interface

design — atomicity is important. In the navigation scenarios, once the pend-

ing markup is switched in, the address bar update should be guaranteed to

succeed. No “silent return” should be allowed. Even in a situation where

atomicity is too difficult to guarantee, the browser should at least raise an

exception to halt its execution rather than leave it in an inconsistent state.

Scenario based on condition 11 (a race condition). Condition 11

is associated with a function call trace which indicates a situation where

two frames co-exist in a renderer and compete to be the primary frame.

Figure 3.10 illustrates this scenario.

The malicious script first loads Page 1 from https://evil. Then it in-

38



tentionally loads an error page (i.e., Page 2 ) in order to make conditional 11

true when LoadHistory() is called later. The race condition is exploited

at time t, when two navigations start at the same time. The following

event sequence results in a spoof: (1) the renderer starts to navigate to

https://paypal.com. At this moment, the primary frame is f1; (2) the

renderer starts to travel back in the history log. Because condition 11 is

true, i.e., HTMLDoc = NULL, a new frame f2 is created as the primary frame.

This behavior is according to the logic of LoadHistory(); (3) the markup

of https://evil in the history is switched into f2; (4) the address bar is

updated to https://evil; (5) the downloading of the paypal.com page is

completed, so its markup is switched into f1. Since f1 is not the primary

frame anymore, it will not be rendered in the content area; (6) the address

bar is updated to https://paypal.com despite the fact that f1 is no longer

the primary frame. When all these six events occur in such an order, the user

sees http://paypal.com on the address bar, but the https://evil page in

the content area. The SSL certificate is also spoofed because it gets updated

with the address bar.

This race condition can be exploited on IE 6, IE 7 Beta 1 and Beta 2 with

a high probability of success: in our experiments, the race condition could be

exploited more than half of the time. The exploit does not succeed in every

trial because event (5) and event (6) may occur before event (3) and event

(4), in which case the users sees the address “https://evil” on the address

bar.

It is worth noting that race conditions are likely to exist in the logic

supporting the tab-browsing mode as well, in which multiple renderers share

and compete for a single address bar.

Scenario based on condition 18 (a hostile environment). Condition

2 and condition 9 trigger the failures of address bar updates, while condition

18 (i.e., RSFC = NULL in RenderView) triggers the failure of the content area

update. We found that the condition can be true when a certain type of

system resource is exhausted. A malicious script is able to create such an en-

vironment by consuming a large amount of the resource and then navigating

the browser from http://evil to http://paypal.com.

When the timing of the navigation is appropriate, the browser will succeed

to update the address bar and fail to update the content area, leaving the

http://evil content and the paypal.com URL visible to the user.

39



Once again, this example demonstrates the importance of atomicity in

graphical interface implementations. In addition to the correctness of the

internal logic of a browser, this scenario emphasizes the resilience against a

hostile execution environment.

3.4 Discussions

In order to better put our work into perspective, this section presents higher-

level discussions about possible defense techniques, other visual spoofing

flaws and various techniques for GUI logic analysis.

3.4.1 How to Defend Against GUI Logic Exploits

The most direct defense against spoofing attacks is bug fixing. All scenarios

that we have discovered have been confirmed by the IE development team. In

a build after IE 7 Beta 3, all the status bar spoofing bugs and two address bar

bugs have been fixed. Two other address bar bugs have been investigated,

and their fixes have been proposed.

In situations where the vendor’s patches are not yet available, vulnerability-

driven filtering can provide fast and easy-to-deploy patch-equivalent protec-

tion. In particular, our colleagues have explored the possibility of using

BrowserShield [104] to foil spoofing attacks. In BrowserShield, web pages are

intercepted at a browser extension, which injects a script-rewriting library

into the pages and sends them to the browser. The rewriting library is exe-

cuted during page rendering at the browser, and rewrites HTML pages and

any embedded scripts into safe equivalents. The equivalent safe pages con-

tain logic for recursively applying run-time checks according to policies that

detect and remove known attack patterns that we described earlier. In the

proof-of- concept implementation, they authored policies for both status-bar

spoofing removal and address-bar spoofing removal. The status bar policy is

to inject JavaScript code into static HTML contents to monitor the status

bar before the mouse click, and compare it with the URL argument of the

FollowHyperlink call. One of the address bar policies is to inject JavaScript

code to check if a URL can cause a silent failure of the address bar update.

40



3.4.2 Achieving GUI Integrity is Challenging

The objective of this chapter is to bring the GUI logic problem to the atten-

tion of the research community, rather than claiming that the visual spoofing

problem as a whole can be solved in the short term. In particular, the fol-

lowing two questions are not addressed by this work.

(1) Is GUI-logic correctness important to users that are

security-unconscious and completely ignore any security indicators? User-

studies have raised the concern that many average users still lack the knowl-

edge or the attention to examine the information provided by security indi-

cators, such as the address bar, the status bar, SSL certificate and security

warning dialogs [37, 126]. Many users readily believe the authenticity of

whatever is displayed in the content area. We agree that this is the current

fact, and argue that a significant effort should be spent on user education

about secure browsing. But such an education would be ineffective without

the trustworthiness of the security indicators — if their information can be

spoofed, even we, as computer science professionals, do not know what to

trust. The success of anti-phishing must be achieved by a joint effort between

the browser vendors and the end users. It is analogous to automobile-safety:

drivers have the responsibility to buckle up, and the automobile manufactur-

ers need to guarantee that the seat-belts are effective.

(2) How to deal with other types of visual spoofs that are not due to GUI

logic flaws? In the introduction, we listed a few visual spoofing scenarios due

to graphical similarities. These issues have little to do with logic problems,

so their treatments are very different from the approach presented in this

chapter. For example, the current version of IE disallows a script from the

Internet zone to open a chromeless window (i.e., a window having only the

content area). It is also clearly specified in design that the URL displayed

on the address bar should be left-justified after each address bar update,

and no pop-up window can stay “always-on-top”, etc. SpoofStick is designed

to interpret any confusing URL on the address bar [116]; Dynamic Security

Skins [38] and Passpet [129] use trusted images to defeat certain spoofing

attacks. Ye and Smith proposed several ideas to implement trusted paths for

browsers by disallowing the page content elements to forge the page status

elements [128]. Virtual machine techniques have also been used to provide

trusted browser GUI elements, e.g., the Tahoma window manager provides

41



a virtual screen abstraction to each browser instance [35]. Nevertheless,

when the internal GUI logic is flawed as shown in this chapter, ensuring

unforgeable GUI elements is not a remedy. Therefore, GUI logic flaw and

graphic similarity can be viewed as two different problems under the same

umbrella of visual spoofing.

3.4.3 A Broad Spectrum of Tools Can Be Used for Systematic
Exploration

The essence of our approach is that we systematically explore GUI logic.

Whether the exploration is done by symbolic formal analysis (such as theorem

proving or model checking) or by exhaustive testing is less important. As

an example of exhaustive testing, we used the binary instrumentation tool

Detours [75] to test the status bar logic. The basic idea is that. since we know

the program invariant and how to generate canonical user action sequences

and canonical DOM trees, we can generate actual canonical HTML pages

and actual mouse messages to test the actual IE status bar implementation.

The advantage of the exhaustive testing approach is that it does not require

manual modeling of the behaviors of each HTML element, and therefore can

avoid the potential inaccuracies in the logic model. Applying this technique,

we were able to find all spoofs derived from our previous modeling.

Nevertheless, there is no fundamental difference as to whether the explo-

ration is done symbolically (e.g., by Maude) or by exhaustive testing (e.g.,

by Detours), because both techniques are based on the same understanding

of the search space and the test case construction. The main effort for the

symbolic exploration is to correctly specify the GUI logic in sufficient detail.

The exhaustive testing requires much effort to drive the system’s internal

state transitions. For example, to test the address bar logic, we would need

to exhaustively enumerate all event interleaving possibilities in an actual

renderer, which is a nontrivial task.

3.5 Related Work

The contributions of our work are: (1) the formulation of GUI logic correct-

ness as a research problem, and (2) the proposal of a systematic approach

42



to uncover GUI logic flaws leading to visual spoofs. There is little existing

work related to our first contribution, but a wealth of work is related to the

second — formal methods and program analysis techniques have been suc-

cessful in discovering software reliability and security flaws. We summarize

a few techniques below.

The SLAM technique [14] uses theorem proving and model checking tools

to statically verify whether or not predefined “API usage rules” are obeyed in

large programs. A static driver verifier is built on the SLAM technique, and

has been deployed for Windows driver implementation correctness. Model

checking techniques are also developed to find file system bugs [127] and

security vulnerabilities [22] in large bodies of legacy source code. Much

research has been done in formal verification of security protocols [87]. A

static analysis technique is used for detecting higher level vulnerabilities such

as SQL injections, cross-site scripting, and HTTP splitting attacks [84]. Our

work is complementary to the existing research, because we have focused on

machine-user link trustworthiness.

Also related are research papers on phishing attacks, e.g., PwdHash is a

browser plug-in that transparently produces a different password for each site

to prevent phishing sites from obtaining usable passwords [106]. Florencio

and Herley designed a technique to detect password phishing by monitor-

ing password-reuse patterns between a well-known site and an unfamiliar

site [60].

43



CHAPTER 4

BROWSER SECURITY ANALYSIS FOR
IBOS

In this chapter we present work that was in part done together with Sam

King, Shuo Tang and José Meseguer.

From Chapter 3 we already know about web browsers and some possible

attacks against them, specifically on the graphical user interface (GUI). In

this chapter we are going further than the post mortem analysis of GUI

security which was described in the previous chapter. We consider the idea

of basing the browser design on explicit security requirements to begin with.

And we look at bugs our browser analysis can find in the browser, as well as

discussing guarantees we can give if no bugs are found.

The notion of a browser that is to be secure by design is exemplified in the

work on the Illinois Browser Operating System (IBOS) [117] web browser,

which is a newly designed browser that builds upon the earlier work on the

OP2 [66] browser. OP2 also aimed at being secure by design and it did use

formal modeling and validation in Maude. We use IBOS as the basis of our

analysis in this chapter. Our analysis was able to influence the design, led

to bug fixes and has increased the overall assurance about the correctness of

IBOS.

In this chapter we get a result on the address bar being correct at all

times, which is an important property for a browser. We already know that

property from Chapter 3. Also, we are able to show that the browser adheres

to the same origin policy. The purpose of the same origin policy is to remove

any possibility of any data leaking from one visited web page to another.

We will explain more about the IBOS browser in Section 4.1, and then

explain the modeling methodology used for the browser in Section 4.2. We

then show three case studies in Section 4.3: (i) a case study on the display

memory in Section 4.3.1, (ii) a case study on the address bar in Section 4.3.2,

and (iii) a case study on the same origin policy in Section 4.3.3.

44



4.1 IBOS

The Illinois Browser Operating System (IBOS) [117] is a web browser de-

veloped at the University of Illinois with the goal of increased security. In

particular, security considerations are taken into account in the initial de-

sign phase and during implementation. The issue with state-of-the-art web

browsers is that they are complex, have a huge trusted computing base and

are integrated closely into the actual operating system, and thus are a prime

avenue for malicious attackers to access a computer. The trusted computing

base is the subset of the software in which any exploitable error would lead

to the whole system being potentially compromised.

IBOS is a combination web browser and operating system that reduces

the trusted computing base. It does so by utilizing a microkernel and ex-

posing browser-level abstractions at the lowest software layer, which allows

removal of almost all traditional OS components and services from the trusted

computing base by directly mapping those browser abstractions to hardware

abstractions. Overall, this approach turns out to be flexible enough to allow

browser security policies while supporting traditional applications. Also, the

overhead added to the browsing experience is small.

Indeed, web-based applications (web apps) and the browser itself have

become quite popular targets for attacks on computer systems. The vulnera-

bilities in web apps are ever increasing, so isolation of the web apps is highly

desirable. For example, the formerly most common security vulnerability,

the buffer overflow, has been overtaken by cross-site scripting, which essen-

tially is a form of script injection into web apps [76]. Vulnerabilities in the

actual web browsers are not as common as web app vulnerabilities, but oc-

cur often enough to be troubling. In 2009, Internet Explorer, Chrome, Safari

and Firefox had 349 new security vulnerabilities [77], which get commonly

exploited by attackers [125, 96, 103, 77]. Further vulnerabilities are possible

in the operating system, its services or libraries.

Not all attacks are created equal, of course, and attacks at the top of

the software stack, e.g., using cross-site scripting to attack web apps, will

only give the attacker access to the browsers current vulnerable web app.

Further down the stack, attacks on the browser would give the attacker access

to all web apps, their data, and system resources the browser can access.

At the bottom of that stack, attacks on the operating system itself can be

45



the most devastating, as the attacker can gain full control of the system.

Vulnerabilities (and attacks) higher in the stack turn out to be more common,

but are less damaging. Attacks lower in the stack have a much higher threat

potential, and that is what IBOS is trying to address.

There are other alternative browser projects with similar goals, but they

all share the caveat of being built on a legacy operating system and include

complex libraries and shared system services inside their trusted computing

base. IBOS consists of an operating system and browser that are co-designed

to minimize the trusted computing base at the web browser level. IBOS

achieves this by moving device drivers, network protocol implementation,

the storage stack, and window management software, among other system

services, outside of the trusted computing base. These components then run

on top of the trusted kernel of IBOS, which can enforce security policies. The

contrast with current state-of-the-art browsers is that they add one layer on

top of another, particularly the fact that the browser is running on top of

the general-purpose operating system. For all the details on IBOS, see [117].

Let us note one important additional consideration. Even though IBOS

is built on top of the L4Ka::Pistachio microkernel [92], that is itself not es-

pecially more trustworthy than other microkernel operating systems, there is

another variant of that microkernel which has been formally verified. That

microkernel, seL4 [80], which uses a very similar set of function calls, could

have been used instead of L4Ka::Pistachio. In that case, all the good prop-

erties of the underlying microkernel would have been inherited by IBOS.

We are doing our analysis in this chapter under the assumption of a correct

underlying microkernel. As seL4 was not publicly available at the initial

development time of IBOS, it was not used for IBOS. Also, seL4 is com-

pletely single-threaded, which L4Ka::Pistachio is not, so some additional

performance loss would be unavoidable.

Now, IBOS is designed to compartmentalize all the different processes as

much as possible, and all communication is being forcibly routed through

the trusted kernel, which can then implement its policies. The IBOS kernel

decides, based on the policies, which communication between processes is

allowed, and thus possible. As we will see in the next section, the communi-

cation between different web page instance, network processes, the network

card, the display memory and the central kernel is modeled. We will analyze

the adherence of IBOS to the Same Origin Policy, as well as check the ad-

46



Figure 4.1: IBOS Architecture

dress bar correctness like we did for Internet Explorer in Section 3.3, and we

also look at the display memory, where we did find a bug.

4.1.1 IBOS Architecture

In Figure 4.1 we show a simplified presentation of the architecture of IBOS.

For all details, please see [117, Section 2]. As shown in the figure, the hard-

ware is at the bottom of the stack, the IBOS kernel is on top of that, and

part of the trusted computing base as well. Everything on top of the kernel

is not part of the TCB. Specifically, all web apps, network processes and the

NIC driver do not need to be trusted. Also, the figure does not show that

all other traditional applications work on top of a UNIX layer, outside the

TCB, on top of the IBOS kernel as well.

Some of the key goals of IBOS are the following, see [117] for all the goals

and more detail:

47



• Security decisions happen at the lowest possible level: small TCB.

• Enough browser states and events exposed, so as to allow for security

policy checking; this makes IBOS flexible to allow new browser security

policies.

A key property of the IBOS browser is that all communication, i.e., all

messages sent or received, get transmitted through the IBOS kernel. This is

because the message passing is implemented as system calls, which of course

go the the microkernel operating system, which is tightly integrated with the

IBOS kernel. The components of the IBOS architecture which we want to

highlight are the following three:

• The IBOS kernel. The IBOS kernel builds upon the L4Ka microker-

nel and is the central component of the IBOS web browser. It takes care

of traditional OS tasks, e.g., process creation and application memory

management. Message passing is based on the L4Ka::Pistachio mes-

sage passing implementation, forcing all messages through the kernel,

and specifically allows the checking of the security policies. The case

studies in Section 4.3 will show some of those policies.

• Network process. The network process is responsible for HTTP re-

quests. It transforms HTTP data into a TCP stream and in turn into

a series of Ethernet frames which are passed to the NIC driver.

• Web apps. A new web app is created for each individual page visit of

the user; specifically, whenever a link is clicked or a new URL is entered

into the address bar. A web app sends out the HTTP request to the

network process, parses HTML and runs JavaScript and renders web

content to a tab. Each web app is labeled with the origin of the HTTP

request used at creation.

We will look into the modeling of parts of these IBOS browser elements

in detail in Section 4.2.1.

4.2 Formal Modeling Methodology

The basis of our formal modeling for IBOS is the source code, explained

by one of the developers, who clarified the design ideas when there were

48



any questions. Any disagreement between the stated design intent and the

source code were brought up for clarification with the developer. To be

perfectly clear, in the end the intended design as stated by the developers took

precedence over the actual source code reading we did, with discrepancies

reported to the developer to be fixed.

The underlying operating system microkernel is not part of this model-

ing. As mentioned in Section 4.1, the microkernel could be replaced by the

fully verified seL4 microkernel, if that is desired, and thus we assume the

microkernel to be working without error. Also, the underlying hardware is

not taken into account. Naturally, some level of abstraction between the

source code and our model is of course unavoidable. For example, no actual

memory addresses are used in the model, but just different pointers.

What is modeled is the architecture of IBOS, which includes: (i) the

kernel ; (ii) general message passing; (iii) web apps; (iv) network processes;

and (v) network interface card access; to mention some of the most important

pieces. Looking at the central piece, in the kernel we have the policy checking

mechanism for messages, an address bar, the content currently displayed on

the screen, etc. Indeed, the UI is also abstracted away into the kernel.

All messages are forced to go through the kernel and they are thus sub-

jected to the policies it wants to enforce. This is already a design decision

in IBOS, which the browser enforces, and it is reflected in our model in the

way messages are passed. Each process can only directly send messages to

the kernel, and the message will include the actual final destination in some

way; but only the kernel is able to send messages to any of the processes. In

our model, we ensure this by having two one-way pipes for messages for each

process and the kernel, i.e., one incoming and one outgoing pipe. No process

can access the pipes of another process, which forces all communication to

go through the kernel. Thus, the kernel is the only connecting point and the

policy checking is easily centralized.

Note that our formal modeling process, similar to our approach in Chap-

ter 3, is done completely by hand. This of course creates two issues: one

being that attacks found in the model might not actually be attacks in the

real browser. That is easily checkable though, and we have no actual false

positive attacks. The other issue is that the model is an abstraction of the

actual browser, as well as a (possibly) imperfect translation of the code. So,

all security guarantees given are based on our model are of course always with

49



regards to the design and cannot guarantee the total absence of programmer

introduced bugs in the browser implementation that are not covered in the

design.

Keeping these caveats in mind, we would argue that the success in find-

ing spoofing attacks on Internet Explorer, see Chapter 3, is a good indication

that a formal modeling approach, as we are taking it here, can in the absence

of attacks in the model give good assurance on the design. Indeed, this is

the foundation upon which the whole browser rests. In comparison, having

machine-based checking of the source code requires a specification to be in-

cluded in the source code, and then that still needs to be grounded somehow.

We believe the right grounding is a design that has been checked already, as

shown in this chapter. Indeed we view our work here as complementary of,

and a natural preliminary to, a future formal verification of IBOS at the code

level, since design verification should precede code verification.

This chapter is different from Chapter 3 in that here we are not exclu-

sively looking at visual invariants, even though we do look at the address bar

spoofability in Section 4.3.2. We look also at connectivity properties inside

the browser, specifically regarding connection between content from different

URLs in the form of the same origin policy as in Section 4.3.3. The display

memory is analyzed first, in Section 4.3.1.

4.2.1 IBOS Architecture Modeling

For the full model with explanations see Appendix B. In this section we point

out key properties and give a general flavor of the model. At the top level,

our state space is made up of objects with an object identifier, a type, and a

set of attributes. Each network process, web app, and the kernel is modeled

as a single object. To illustrate this, we show Figure 4.2. In that figure

all objects outside the kernel are shown as rectangles. Note that pipes are

a special kind of object that connects the objects at its left and right end.

Other than that, arrows show connectivity. The ellipses inside the kernel

contain relevant pieces of the kernel, that are not objects themselves. There

will of course be multiple copies of most objects, except for the NIC, display

and web app manager.

Let us start looking at the kernel, and particularly the message pass-

50



Figure 4.2: IBOS Model State

ing mechanism. First, we present more information on the messages. All

messages are passed as system calls, where the browser-specific part of the

message is encapsulated in the system call. First, the message part specific

to the browser has the following format, which we call the payload of the

encapsulating system call:

op payload : Oid Oid MsgType MsgVal

String typed untyped -> Payload [ctor] .

The arguments of payload are the sender (as Oid), the receiver (as Oid),

the message type (as MsgType), some auxiliary message info (as MsgVal),

51



an argument commonly containing the URL that is requested or sent (as

String) and two more arguments (typed and untyped) that could transport

more data, and which we are going to ignore here. The sort Oid is that of

object or process identifiers. Each web app, network process, etc., has an

Oid. Note that the correct sender Oid is enforced by the kernel, as it knows

which process sent the system call encapsulating this payload.

The actual message is then built using the payload and system call type:

op msg : SyscallType Payload -> Message [ctor] .

op OPOS-SYSCALL-FD-SEND-MESSAGE : -> SyscallType .

where OPOS-SYSCALL-FD-SEND-MESSAGE is the most commonly used type of

system call for sending browser messages.

To model the fact that the kernel knows which process actually sent

a message (as a system call) and to make sure that in the model no two

processes can send messages directly to each other, but are forced to send

messages via the kernel, the model defines one pipe object per process (using

the same Oid as the associated process), which contains two one-way pipes,

going to the kernel from the process and going to the process from the kernel:

op pipe : -> Cid [ctor] .

op fromKernel : MessageList -> Attribute [ctor] .

op toKernel : MessageList -> Attribute [ctor] .

Let us show an example pipe object for the process with 1050 as Oid

which currently holds no message going either way:

< 1050 : pipe | fromKernel(mt), toKernel(mt) >

Suppose this process wants to send for example the message:

msg(OPOS-SYSCALL-FD-SEND-MESSAGE,

payload(1050, 256, MSG-FETCH-URL, 0,

l(http,dom("test"),port(81)),

mtTyped, mtUntyped))

This message comes from web app 1050 and goes to (presumably) network

process 256, sending the message to fetch a URL (MSG-FETCH-URL) from the

(fictional) domain http://test:81. This message would then be appended

52



to the list of messages in toKernel in the pipe object. The kernel enforces

correct sender Oid based on the pipe’s id by simply changing the given sender

Oid, if necessary.

As part of the policy checking when a network process and a web app

communicate, their connection is checked. This means that both of them

need to be linked to the same domain. This is modeled by the equation:

eq < kernel-id : kernel |

handledCurrently(checkConnection(Num:Nat, Num’:Nat, M)) ,

weblabels(pi(Num’:Nat, L:Label),

WPIS:WebappProcInfoSet) ,

networklabels(pi(Num:Nat, L:Label, L’:Label),

NPIS:NetworkProcInfoSet) ,

Att >

= < kernel-id : kernel |

handledCurrently(M) ,

weblabels(pi(Num’:Nat, L:Label),

WPIS:WebappProcInfoSet) ,

networklabels(pi(Num:Nat, L:Label, L’:Label),

NPIS:NetworkProcInfoSet) ,

Att > .

The property being checked here is that the receiving web app with id

Num’:Nat is associated to a URL L:Label in the kernel storage for web

app connections weblabels, and that the sending network process with id

Num:Nat is associated with the same URL L:Label in the network pro-

cess connection storage networklabels. Then the message is simply be-

ing passed on, by dropping the checkConnection wrapper around the mes-

sage M. The kernel is only handling one thing at a time, which is stored

in handledCurrently. Once the current instruction has been dealt with,

any of the currently incoming messages can become the next message to be

executed. This is modeled by the rule:

rl [kernelReceivesOPMessage] :

< kernel-id : kernel |

handledCurrently(mt) ,

msgPolicy(MP), Att >

< ID : pipe |

toKernel(

msg(ST:SyscallType,

payload(N, N’, M:MsgType, V:MsgVal, S:String,

53



T:typed, U:untyped)), ML) ,

Att2 >

=>

< kernel-id : kernel |

handledCurrently(policyAllows(

msg(ST:SyscallType,

payload(ID, N’, M:MsgType, V:MsgVal, S:String,

T:typed, U:untyped)), MP)) ,

msgPolicy(MP), Att >

< ID : pipe | toKernel(ML) , Att2 > .

Note that the kernel does not take the message to be dealt with directly, but

wraps the actual message inside the policyAllows operator together with

the set of message policies MP as an extra argument, which is an attribute

of the kernel wrapped in msgPolicy. Also, in the message the sender id N

which was given by the sender is forcibly changed to the actual sender id ID,

which is the process id of the pipe (and thus the associated process).

For the network process we are using (as does IBOS) the process id 256

through 1023. The attributes of a network process are:

op returnTo : ProcId -> Attribute [ctor] .

op in : LabelList -> Attribute [ctor] .

op out : LabelList -> Attribute [ctor] .

The returnTo attribute stores the process id of the web app that this network

process will return data to, while the attributes in and out hold the lists of

labels (representing URLs) that the network process will ask data from and

has received data from already. The simplification we use here is to not use

the HTML code from a given URL, but just use a URL as representing the

data from that URL.

For web apps we are using the process id 1024 through 1055. Their

attributes are:

op rendered : Label -> Attribute [ctor] .

op URL : Label -> Attribute [ctor] .

op loading : Nat -> Attribute [ctor] .

The label inside rendered is the URL for which the web app has put the

data on the screen, provided it is the active web app. The label inside URL

is the location where this web app wants to load data from. loading is just

a binary flag indicating whether the web app has already sent a request to

54



load data. Initially, the rendered field for a new web app will be empty,

and loading is 0, meaning that it has not yet started to load. This equation

sends the message to start loading:

eq < N : proc | rendered(L) , URL(L’) , loading(0) , Att >

< N : pipe | toKernel(ML) , Att2 >

= < N : proc | rendered(L) , URL(L’) , loading(1) , Att >

< N : pipe | toKernel(ML,

msg(OPOS-SYSCALL-FD-SEND-MESSAGE,

payload(N, network-id, MSG-FETCH-URL, 0, L’,

mtTyped, mtUntyped))) ,

Att2 > .

The message is sent to fetch the data from URL L’ and the loading attribute

changes to 1. On return of the requested data, rendered will change to L’.

The hardware pieces of Figure 4.1, video card, NIC, etc., are not modeled

in any detail. Only the NIC is modeled, and it receives target URLs from

the memory set aside for this purpose through the kernel, and then, after a

potential delay, returns the representation of the resulting data.

For the display memory case study in Section 4.3.1, the model has been

extended with the required notions of memory, page table and page faults.

This extended model exposed a bug in IBOS.

4.3 Case Studies

Our analysis of the IBOS web browser includes three different case studies. In

the first study, we analyze the display memory and find a bug that has been

fixed for IBOS. For the second study we analyze the address bar correctness.

In the third study, we look at the Same Origin Policy (SOP), which comes

in the form of a number of sub-properties that are required for SOP to hold

that were proposed in [117]. The second and third case studies show that

the browser design, as modeled, using appropriate reductions in our proofs,

is secure and so these good properties are true of the actual browser.

55



4.3.1 Case Study 1: Display Memory

In IBOS, only the currently active web app is able to write to the display

memory, i.e., change what the user sees on the screen in the content area.

This is a security feature that prevents other web apps from manipulating

the output of the current web app and makes them unable to eavesdrop

content that is being displayed. In broad terms, the way this is handled is

that the display memory is completely flushed whenever the active web app

changes, the old active web app loses its access to the display memory and

the new active web app gains access to that display memory. The IBOS

developers knew that under some (at that point unknown) circumstances it

could happen that the browser’s content area simply was empty and further

did not update upon switching from one tab to another. Note that this is

not a security concern. No data can be leaked and no mis-match between

the content area and the displayed URL is possible. This is rather a usability

concern as that tab became unusable.

We modeled the interaction between the web apps, the kernel (holding

the page table) and the memory abstraction we use. The cleansing of the

display memory is enforced by the memory page table, which resides in the

kernel. To illustrate this, let us first describe how the bug that we ultimately

uncovered in the model works. The bug is reproducible in the actual browser

and a fix also has been proposed.

1. Assuming a single web app, A, that is currently active, we note that the

display-mem pointer of A (used for accessing the video memory) goes

to the location A-VID in the page table, and that maps to the actual

video memory, and displays the content of the web page A is associated

with.

2. Adding a second web app B by creating, e.g., a new tab (this makes B

the active web app) has the following effects:

• The page table in the kernel maps A-VID to NULL instead of the

video memory.

• The display-mem pointer of B points to B-VID in the page table,

which in turn points to the video memory, and the content that B

is associated with gets displayed.

56



3. A redraw request for A, while it is not the active web app, is the crucial

piece of the puzzle for this bug. When that happens, the page fault for

A-VID is dealt with by making it point to some memory we call dummy

memory. The changed content for A is put there, but that memory is

of course not presented on the screen.

4. When the user then switches back to the tab containing A the behavior

is similar to before when the new tab was created:

• The page table in the kernel maps B-VID to NULL.

• But, as A-VID already points to DUMMY, there is no page fault when

that memory gets updated. Without a page fault, A-VID is not

mapped to the video memory. Therefore, the display stays blank.

The key lesson here is that an update to a background web app will lead to

the content area of the screen not properly updating when the user switches

back to that web app. Usually, such updates will happen to the active web

app only, but if it does happen in the background, this problem appears.

The reason for this to happen is that page faults are used to (re-)assign the

pointers in the page table. The simple fix is to force the pointer A-VID from

above to change appropriately.

Knowing how to fix the design allowed us to propose a fix for the actual

implementation as well. The model allowed us to extract the required order

of tab switching and data loading that lead to the browser exhibiting this

error. We explain how we find it, in the rest of this section.

First, let us explain a necessary part of the search exploration, which is

the command explore-space:

op explore-space : -> Configuration .

eq explore-space = < testMsg : testMsg | cmd( explore ) > .

where testMsg is a wrapping process, which allows this to be put at the

top level of our multi-set of processes, and cmd is a wrapper allowing this to

follow the usual way of storing information in process attributes. The key is

the explore command inside:

op explore : -> Cmd .

op explore : Nat -> Cmd .

57



rl explore => explore(3) .

rl explore(0) => mtCmdList .

rl explore(s(N:Nat)) => new-tab , explore(N:Nat) .

rl explore(s(N:Nat)) => update , explore(N:Nat) .

rl explore(s(N:Nat)) => tab-switch , explore(N:Nat) .

where the number 3 can be replaced by any desired number. The explore

command will then unroll, step by step, and at each step will create either a

new-tab command, an update command or a tab-switch command. These

simulate user input. As explore is defined by rules, the search we use this

command in will explore all combinations of all orders and repetitions of

these commands. We do not show how each of those commands will addi-

tionally get assigned to it one of a number of possible URLs, as well as one

of the existing web-apps (for update only), as needed. Again, all of the pos-

sible combinations will be explored. The explore command indeed includes

creation of new tabs, loading data to any existing web app, and switching

between web apps.

We give the following search command, that in initial-test starts with

one active web app, and in explore-space contains the exploration of dif-

ferent commands as we have just described.

search in MEMORY : initial-test explore-space

=>! X:Configuration

< kernel-id : kernel |

Att:AttributeSet, activeWebapp(N:Nat),

pg-table(pg:PGTESet,

pg-table-entry(N:Nat, otherMemory)),

vidMem(about-blank) > .

The goal state we are looking for in this search command is one in

which there is an active web app, but the page table entry for that web

apps memory is pointing at the afore-mentioned dummy memory, noted as

otherMemory here, while the content of the actual vidMem is empty, shown

by the about-blank inside.

The search does lead to a number of states that are similar modulo some

renaming, and removal of unneeded instructions. By looking at those result

states, and at the trace leading to them, we can see what happens, and find

the order of actions, which we have described above already, that leads to

the display memory becoming empty and unchanging for a particular web

58



app. Now we can distill the commands from that exploration to a list of

three commands, which we call bug-trigger:

eq bug-trigger = < testMsg : testMsg |

cmd( new-tab(Url2) , update(1050, Url3) ,

tab-switch(1050)) > .

where the testMsg process wraps the cmd wrapper which includes the actual

set of commands that triggers the bug. Note that Url2 and Url3 are just

any URLs and 1050 is the process id of the initially existing web app process

from initial-test.

In the search above we can replace explore-space by bug-trigger and

then we get a single resulting goal state, showing this bug. To note again, this

is not a security issue but it certainly is a usability issue that the modeling

has been able to uncover.

4.3.2 Case Study 2: Address Bar

Another important property for a web browser is the trustworthiness of user

interface elements, in their capacity to counter spoofing attacks. Particu-

larly, the address bar needs to be trustworthy, so that the user always knows

which site is actually being visited right now. It is truly important to know

whether the currently visited site is really his/her banking web site, where

entering credentials is fine, or if it is instead a phishing web site, where if

the user enters his/her account information monetary loss is imminent. We

all know that it is possible, even simple, for malicious attackers to create

phishing web sites that are indistinguishable on the surface from the real

web sites. A careful user should be able to trust the address bar, to prevent

such phishing from succeeding. Also see Section 3.3 about the address bar

spoofing possibilities we found in our Internet Explorer analysis.

As IBOS is designed with security in mind, our goal in this section is

not only to find flaws that could be abused by attackers, if they exist, but

also, more importantly, in the case of the absence of such flaws we will be

able to gain a higher level of assurance that no such spoofing attacks are

possible. The concern about the address bar is a security concern, so it is

more important than the usability concern we have looked at in Section 4.3.1.

59



The important property for the address bar is that the content of the dis-

played page is always from the address which is displayed in the address bar.

In our model, the kernel keeps track of the address bar by means of the data

stored in the displayedTopBar. The source of the content being displayed is

stored in the display process abstraction, which has the displayedContent

field to store the information. At all times, the content of both these fields

needs to be the same, the exception being when there currently is no content,

which is modeled by the about-blank URL. If one of the two fields is empty,

in that sense, the other one can have any value.

We start the search for potential attacks, in the form of a mismatch of

these two fields, from an initialized kernel, together with the driver

inspect-space. We are looking for any configuration in which there is a

mismatch between the value of displayedTopBar and displayedContent.

If no solution to this search is found, then there is no attack.

search init-simp-kernel

inspect-space

=>*

X:Configuration

< kernel-id : kernel | Att:AttributeSet ,

displayedTopBar(URL:Label) >

< display-id : proc |

displayedContent(URL’:Label),

Att2:AttributeSet >

such that URL:Label =/= URL’:Label

and URL:Label =/= about-blank

and URL’:Label =/= about-blank .

First let us note that inspect-space is similar to explore-space from

Section 4.3.1:

op inspect-space : -> Configuration .

eq inspect-space = < testMsg : testMsg | cmd( inspect ) > .

with the same testMsg wrapping process and cmd the wrapper for the actual

sequence of commands to be tested. The key here is the inspect command.

We will call the rules for inspect the trigger rules, and write them as RT .

All other rules we have presented here, and in Appendix B, belong to the

internal rules of the model, written as RI . We are working modulo the

equations E, which are all the equations given here and in the appendix. So

60



we are actually rewriting with →R(I∪T )/E
, which can be split into →RI/E

and

→RT/E
. We will use the short-hands →I and →I/E (resp. →T and →T/E) to

represent →RI/E
(resp. →RT/E

).

op inspect : -> Cmd .

op inspect : Nat -> Cmd .

rl inspect => inspect(3) .

rl inspect(0) => mtCmdList .

rl inspect(s(N:Nat)) => new-url , inspect(N:Nat) .

rl inspect(s(N:Nat)) => switch-tab , inspect(N:Nat) .

This shows that inspect is unrolled step by step. The number 3 can of course

be changed, but that number is picked in particular so that two web apps can

be created and the tab can then be switched as well. This is enough to show

the property of our choice here, as we explain below. At each step either a

switch-tab or new-url will be generated. This simulates user input again.

Compared to the prior section there is no explicit update here as the current

active web app can update the content area at any time and we do not have

to explicitly force that. As inspect is defined by rules, the search command

will create all possible combinations. Not shown here is how new-url gets

assigned a new URL and how switch-tab picks any of the web apps to be

the new active web app. Here, we do work on a model without the display

memory bug that has been exposed in Section 4.3.1. Indeed, when we run

the above search command we get the result that there are no solutions:

No solution.

states: 247743 rewrites: 3663864 in 247886ms cpu

(248055ms real) (14780 rewrites/second)

We now have to discuss what this really tells us about the browser and

the security of the address bar. In Section 4.2 we have already discussed the

limitations and conditions of our approach in general, but now we can look

into this specific case study. First, note that the two objects we care about,

the address bar and the content as stored in the display process, are both

stateless objects. That is, they have no memory what was stored in them

before, but only know what is there right now.

Both the address bar and the display content are only changed due to the

current web app interacting with the kernel when created or when the tab is

switched to it. To create a mis-match between the two, two different URLs

61



are all that is needed, which can be provided by just two web apps. This

allows us to make the reduction that only the last two web apps that are

on the screen need to be taken into account. The rest of the browser model

state and the length of the run of the browser model is irrelevant and thus

abstracted away.

Assume we needed to consider a third web app, then that would only

be the case if that web app made a change to either of the two objects in

question; but then one of the other two does not make a change (or does a

duplicate one), so then that other web app becomes irrelevant and we are

back to the case of two web apps. If there was a way for more than two web

apps to create such a mis-match, then the deciding last step (we would stop

at such a mis-matching point) must be either a new web app being added or

the tab being switched. But then, that whole trace of actions and number

of web apps can be simplified to just the state before that last action, with

only the old active web app and the new active web app taken into account

to create the exact same mis-match. Now we can focus on the interaction of

only two web apps, which requires search up to depth three, due to the need

of also allowing a tab switch.

Now due to the reduction we can conclude that, since there are no mis-

matches for the limited number of web apps and steps, there will not be any

such mis-match at all. Now that we have sufficiently motivated the property,

let us make it precise and formal by presenting first a necessary lemma and

then our key theorem.

Internal Normalization Between Trigger Rules

Let us first note that this is a general observation, that will also be helpful in

Section 4.3.3. There is no interference between internal rules I and trigger

rules T , i.e., we can re-order them in any way we please. In particular, we

like to normalize with the internal rules after each execution of a trigger

rule. That means, for execution using both internal rules and trigger rules,

→∗(T∪I), we will rearrange that to →T→!
I . . .→T→!

I . . .→T→∗I . The last set

of internal rules does not have to be carried all the way to normalization, to

take into account the fact that the combination of trigger and internal rules

might not normalize either. Let us phrase this claim formally as a lemma,

noting that by →i
T/E we mean the i-th use of a rule from T/E:

62



Lemma 1 Given terms s1 and s2, for any chain of rewrites of the form

s1 →∗(T∪I)/E s2, with n uses of trigger rule, we can rearrange that sequence,

using the same rewrites, to s1 →1
T/E→!

I/E . . .→i
T/E→!

I/E . . .→n
T/E→∗I/E s2.

Proof. Given any state t for which both an internal rule I0 and a trigger

rule T0 are available for rewriting, we claim that the application of these

rules commutes. That is, there are t′ and t′′ so that t →I0 t
′ →T0 s as well

as t→T0 t
′′ →I0 s. Now, let us prove this claim.

• Using a rule I0 to go from t to t′ will still leave the rule T0 enabled,

because all rules in T use only inspect on the left hand side, while

none of the rules in I use inspect at all.

• Using a rule T0 to go from t to t′′ also leaves rule I0 enabled as any of

the rules in T transforms inspect (which is unusable by any rule in I

anyway) but leaves the rest of the state intact.

The resulting term s is indeed the same, for either order of internal and

trigger rule execution, if both are enabled. Now, based on the proof of any

one step commuting, we can actually rearrange the whole rewrite sequence so

that we always take all possible steps using internal rules first. Only upon

hitting a normal form by the internal rule steps will we take a single step

with a trigger rule. We then repeat this. This is illustrated in Figure 4.3,

where Ii is an internal rule, Ti is a trigger rule, and ! means that we go for

normalization using rules from I.

We can now consider the effect of each trigger rule on the state by itself.

We let the model do all internal computations until finished before using

another trigger.

General Notes on Trigger Rules

Let us discuss the results of each trigger in a rewriting sequence first, which

will be relevant in Section 4.3.3 as well. Note that we consider not just

the trigger rule application, but the following normalization by the internal

rules, which is associated to this trigger. There are two kinds of triggers,

switch-tab and new-url. Let us look at them one at a time:

switch-tab: The switch-tab trigger makes the kernel switch the ac-

tive tab, as if a user interaction to switch had happened. In particular, in

63



Figure 4.3: Commuting Diagram for Internal and Trigger Rules

the model it can impact the activeWebapp, the displayedContent and the

displayedTopbar. Keep in mind that all of these data fields are without

history: only the current value is retained.

new-url: The new-url trigger models the user giving a URL. It will lead

to the creation of a new web app, find or create an appropriate network

process, and transfer data from target URL (request and response) via the

NIC. It will also extend the mapping of web apps and network processes to

URLs, and thus each other. Also, the active tab is switched, as described

above in the summary of switch-tab. Each new-url is independent of all

prior triggers of the type.

Note that in both cases, if no violation is found at the trigger step (in-

cluding the following normalization by internal transitions), then the trigger

64



potentially increases the state space size. But, as all URLs and process ids

are generic in the model (i.e., rules are blind with regards to the exact id or

URL) this trigger could be ignored anyway, unless it adds the process that

is active at the time of a violation being found, or if it adds the specific URL

needed for the violation.

Also, note that the kernel mappings of processes to URLs, for both web

apps and network processes, never has any element modified, but is only

added to.

Internal Rules Termination

Let us now consider the internal rules and make sure that they actually do

terminate, as the above reordering of trigger rules and internal rules does rely

on this fact. Essentially, the internal rules deal with the passing of messages,

and those messages get consumed ultimately. New messages are only created

as responses to the consumption of existing messages, but those messages

have less potential for spawning further messages down the line. There is a

clear order on the rules that does not include any loops. That is, an initial

message will get passed around and transformed into different messages, but

will ultimately disolve once its travels are completed.

Additional messages can of course be added to the system by trigger

rules. Initially (not taking trigger rules into account) a system will contain

a fixed number of messages, potentially in different points of this descending

chain of possible rule applications. Each of this set number of messages will

be consumed in the end and the rewrite system using the internal rules,

without the trigger rules, will thus terminate.

We look at a single generic data transfer and explain how its messages

will go from one rule to the other but will descend in the number of po-

tential further rule applications. The internal rules do terminate, and the

details for this with the detailed order of the internal rules can be found in

Appendix B.2.

Address Bar Correctness Proof

Due to the previously discussed Lemma 1 we only need to consider sequences

of the form →T→!
I→T→!

I . . . →T→∗I . As we have shown, our bounded

65



model checking has analyzed all sequences with at most 3 trigger rules being

used, and found no possible violation. So, the address bar is correct for all

sequences with at most 3 trigger rules. We now state and prove a theorem,

showing that this correctness extends to sequences with any number of trigger

rules being used.

Theorem 1 The property of address bar correctness holds for any rewrite

sequence, using any number of trigger rule steps.

Proof. The base case of at most 3 trigger rule steps is proven by the above

model-checking analysis. The reduction given in Lemma 2 then completes the

proof by reducing any violation of greater length to use at most 3 trigger rule

steps, so no violation can exist.

We now give the reduction lemma that assures us that all longer sequences

can be reduced to shorter ones:

Lemma 2 Any sequence of trigger rule steps that leads to a violation of the

address bar correctness and uses 4 or more trigger rule steps can be reduced

by a step. This yields that all the possible trigger rule sequences leading to a

violation must be of length 3 or less.

Proof. First note that for all rewrite sequences with at most 3 trigger rule

steps used, our model-checking analysis has proved that there are no viola-

tions. Now let us assume that our claim is incorrect, that is, that there is at

least one sequence of rewrites for which a violation of the property is found

in 4 or more steps. Let us pick any such sequence with the smallest possible

number of trigger rule steps used, and let that number be N , obviously with

N ≥ 4.

Looking at the search command above, which establishes correctness for

up to 3 triggers, we see that in a violation there need to be two different

URLs, so there must have been at least two trigger rule steps of the type

new-url(U) that have been used. Looking at the violation description (in the

search command above), we find that for one of them U = URL:Label and

for the other U = URL’:Label. Naturally, there will also be the last trigger

rule step used, after which the violation is exhibited. Let us denote that last

trigger by n, while we denote the two new-url cases by l1 (with URL:Label)

and l2 (with URL’:Label). Also, note that if one of those triggers appears

66



more than once, we can always pick its last appearance for l1 respectively l2.

Now, whenever n is not the same as l1 and not the same as l2, then there

are two cases, one where l1 happens before l2 (written l1 < l2 < n) and one

where l2 happens before l1 (written l2 < l1 < n). In all cases, n is the last

trigger happening. We will consider the special cases of n = l1 and n = l2

later. We will now look at sequences leading to a violation and show that

we can construct a sequence using fewer triggers, in contradiction to having

picked the sequence with smallest N .

Let us first look at the case where l1 < l2 < n, with a violation occurring

during the internal steps after n (or at n itself). As we know that N ≥ 4,

there will be at least one further trigger rule step used, let us call it k. That

leads to the case distinction of such an additional rule step being before the

three other triggers, between l1 and l2 or between l2 and n. If there is more

than one such trigger rule step happening, we will pick one which is before l1

if possible, between l1 and l2 if there is one there and no step before l1, and

only pick a step after l2 if there are no other steps earlier.

Case 1: k < l1 < l2 < n. There can be multiple additional trigger rule

steps before l1, we actually pick the immediate predecessor of l1 for k.

• Trigger rule step k is a switch-tab: This changes the active web app

immediately before introducing the URL in l1 which appears in the vi-

olation. Upon the execution of the trigger in l1 and normalization by

the internal rules, all changes made by this switch-tab are completely

undone, and as there was no violation here (or we would have a shorter

sequence already) we can drop this switch-tab trigger from our list of

triggers to be executed, and will reach the same violation at the end of

the sequence, which is now one step shorter.

• Trigger rule step k is a new-url(U): Using this trigger rule step does

increase the state space size by adding all the pieces mentioned before

in the description of what such a trigger does. Now, if U 6= URL:Label

and U 6= URL’:Label, then all the additions are part of the state, but

no violation occurs here. Whatever k added is just data being carried in

the state that has no effect on the violation that will be found later as it

is for a different URL. Thus, we can shorten the sequence by dropping

this trigger k and will get the same violation at the end, but with a

shorter sequence.

67



In case U = URL:Label, then the following step l1 will duplicate that

trigger step, in which case we only need the last one of the two, and

can again drop the trigger k and have a sequence that is one shorter

with the same resulting violation.

In case U = URL’:Label, then the step l2 which happens later will

duplicate it, and again we only need the last one, so we can drop this

trigger and the resulting sequence will give rise to the same violation

but be one shorter.

Case 2: l1 < k < l2 < n. There can be multiple additional trigger rule

steps between l1 and l2, we actually pick the immediate predecessor of l2 for

k. This works quite similar to case 1.

• Trigger rule step k is a switch-tab: This changes the active web app

immediately before introducing the URL in l2 which appears in the vi-

olation. Upon the execution of the trigger in l2 and normalization by

the internal rules, all changes made by this switch-tab are completely

undone, and as there was no violation here (or we would have a shorter

sequence already) we can drop this switch-tab trigger from our list of

triggers to be executed, and will reach the same violation at the end of

the sequence, which is now one step shorter.

• Trigger rule step k is a new-url(U): Using this trigger rule step does

increase the state space size by adding all the pieces mentioned before

in the description of what such a trigger does. Now, if U 6= URL:Label

and U 6= URL’:Label, then all the additions are part of the state, but

no violation occurs here. Whatever k added is just data being carried in

the state that has no effect on the violation that will be found later as it

is for a different URL. Thus, we can shorten the sequence by dropping

this trigger step k and will get the same violation at the end, but with

a shorter sequence.

In case U = URL:Label, then this is duplicating the prior step l1. We

stated earlier that we pick l1 to be the last appearance of the trigger rule

step new-url(URL:Label), so this case is moot.

In case U = URL’:Label, then the following step l2 will duplicate that

trigger step, in which case we only need the last one of the two, and can

68



again drop the trigger step k and have a sequence that is one shorter

with the same resulting violation.

Case 3: l1 < l2 < k < n. There can be multiple additional trigger rule

steps between l2 and n. If there is any new-url(U) type trigger, we pick

the last of them as k. If there are only switch-tab triggers, we pick the

immediate predecessor of n for k.

• Trigger rule step k is a new-url(U): Using this trigger rule step does

increase the state space size by adding all the pieces mentioned before

in the description of what such a trigger does. Now, if U 6= URL:Label

and U 6= URL’:Label, then all the additions are part of the state, but

no violation occurs here. Whatever k added is just data being carried

in the state that has no effect on the violation that will be found as it

is for a different URL. Thus, we can shorten the sequence by dropping

this trigger step k and will get the same violation at the end, but with

a shorter sequence.

In case U = URL:Label, then this is duplicating the prior step l1. We

stated earlier that we pick l1 to be the last appearance of the trigger rule

step new-url(URL:Label), so this case is moot.

In case U = URL’:Label, then this is duplicating the prior step l2. We

stated earlier that we pick l2 to be the last appearance of the trigger rule

step new-url(URL’:Label), so this case is also moot.

• Trigger rule step k is a switch-tab: This changes the active web app

immediately before the step n which creates the violation. Let us first

emphasize that there are no new-url(U) triggers in the sequence except

for l1 and l2. All the triggers between l2 and n are of the switch-tab

form.

If there are multiple such triggers, then in addition to k directly before

n there is another one, call it m. Now, trigger m and all its changes

will be completely undone by trigger k. So, trigger m is not needed, and

removing trigger m will still yield the exact same violation.

If there is only one such trigger, then we have l1; l2; k;n as the sequence

giving a violation. But, then k can only switch the active tab to either

the web app associated to l1 or l2. In the case of k making the web app

69



of l1 the active one, we get the same result by moving l1 to the spot of k

in the order and dropping k, that is, l2; l1;n will yield the violation and

be shorter. On the other hand, if k makes the web app of l2 active, that

is not needed, as it already is the active one at that point. So l1; l2;n

will similarly yield the violation and it is shorter.

Now we need to look at the case when l2 < l1 < n, but it works just like

the case of l1 < l2 < n, so we do not repeat all the arguments.

This leaves us with the two cases where either l1 = n or l2 = n.

First, we look at l1 = n. This means we have l2 < n, so any additional

trigger k can either be before or after l2, giving rise to two cases.

Case 1: k < l2 < n.

• Trigger rule step k is a switch-tab: This changes the active web app

immediately before introducing the URL in l2 which appears in the vi-

olation. Upon the execution of the trigger in l2 and normalization by

the internal rules, all changes made by this switch-tab are completely

undone, and as there was no violation here (or we would have a shorter

sequence already) we can drop this switch-tab trigger from our list of

triggers to be executed, and will reach the same violation at the end of

the sequence, which is now one step shorter.

• Trigger rule step k is a new-url(U): Using this trigger rule step does

increase the state space size by adding all the pieces mentioned before

in the description of what such a trigger does. Now, if U 6= URL:Label

and U 6= URL’:Label, then all the additions are part of the state, but

no violation occurs here. Whatever k added is just data being carried in

the state that has no effect on the violation that will be found later as it

is for a different URL. Thus, we can shorten the sequence by dropping

this trigger k and will get the same violation at the end, but with a

shorter sequence.

In case U = URL:Label, then this is duplicating the later step n, in

which case we only need the last one of the two, and can again drop

the trigger k and have a sequence that is one shorter with the same

resulting violation.

In case U = URL’:Label, then the following step l2 will duplicate that

trigger, in which case we only need the last one of the two, and can

70



again drop the trigger k and have a sequence that is one shorter with

the same resulting violation.

Case 2: l2 < k < n. There can be multiple additional trigger rule steps

between l2 and n. If there is any new-url(U) type trigger, we pick the last

of them as k. If there are only switch-tab triggers, we pick the immediate

predecessor of n for k.

• Trigger rule step k is a new-url(U): Using this trigger rule step does

increase the state space size by adding all the pieces mentioned before

in the description of what such a trigger does. Now, if U 6= URL:Label

and U 6= URL’:Label, then all the additions are part of the state, but

no violation occurs here. Whatever k added is just data being carried

in the state that has no effect on the violation that will be found as it

is for a different URL. Thus, we can shorten the sequence by dropping

this trigger k and will get the same violation at the end, but with a

shorter sequence.

In case U = URL:Label, then this is duplicating the later step n, in

which case we only need the last one of the two, and can again drop

the trigger k and have a sequence that is one shorter with the same

resulting violation.

In case U = URL’:Label, then this is duplicating the prior step l2. We

stated earlier that we pick l2 to be the last appearance of the trigger rule

step new-url(URL’:Label), so this case is moot.

• Trigger rule step k is a switch-tab: This changes the active web app

immediately before the step n which creates the violation. Let us first

emphasize that there are no new-url(U) triggers in the sequence except

for l2. All the triggers between l2 and n are of the switch-tab form.

If there are multiple such triggers, then in addition to k directly before

n there is another one, call it m. Now, trigger m and all its changes

will be completely undone by trigger k. So, trigger m is not needed, and

removing trigger m will still yield the exact same violation.

If there is only one such trigger, then we have l2; k;n as the sequence

giving a violation. k can change the active web app but there is only one

(created by l2) and it is already active, so we can drop k and have a

71



shorter sequence leading to the violation. (This sequence is only of

length three anyway, and thus, by model-checking, has already been

proven to have no violation.)

Then, we consider l2 = n, so we have l1 < n and additional triggers k are

either before l1 or after l1, yielding two cases. But, this works just like the

case of l1 = n so we do not repeat all the arguments.

So, in each case we have shown that there is a sequence one shorter, which

still violates the property. This is in contradiction to our assumption that we

have picked the sequence with the smallest number of triggers, N . 2

The lemma that allows reduction of all sequences to 3 or less trigger rule

steps, proved just above, together with the model-checking analysis of the

base case of up to 3 trigger rule steps thus prove that the address bar does

behave correctly at all times. This holds for any number of trigger rule steps

used in a sequence.

4.3.3 Case Study 3: Same Origin Policy and More

The same origin policy (SOP) is the primary security policy that all modern

browsers implement. We present a very short summary here. A much more

complete discussion of this policy is available in [115].

In essence, SOP is a non-interference policy. It is designed to isolate

web pages, including all the associated information regarding them, by their

source. The labels being used for this are the domains of their origin in the

form of an URL. If the browser has opened two web pages from domain A

and domain B, a correctly implemented SOP will enforce these two web pages

to be isolated. It turns out that commodity browsers do not do a very good

job of doing this correctly [24], due to the fact that the required checks are

scattered through their large code base.

Each web page is a frame, containing a HTML document and any material

linked from that HTML document. It can include references to network

objects, e.g., images, JavaScript, etc. When downloading these elements the

browser will label them with the frame level URL. In some sense, the original

web page is responsible for all elements it loads. Say, the top level URL is A,

but a JavaScript from B is downloaded. That JavaScript then runs with the

permissions of A, not those of B. This means that the script can access all the

72



information currently loaded from A in this frame, but not any information

from B, even if there is a separate frame from B. For linked HTML elements

SOP is more restrictive in that it requires those objects to have the same

source as the frame level.

To motivate how crucial the SOP is, let us look at a standard browsing

experience: you have two web pages open, where one of those is your bank’s

web site. If the other currently open web page turns out to be malicious (say,

you clicked on some random link by accident), we want to ensure that it will

not be able to get information about your bank account, or worse, make any

changes to your bank account or start a transaction. As the two pages will be

from different origins (otherwise your bank has been hacked already) there

should be no way for them to communicate.

In [117] a number of security considerations for IBOS are presented, and

a subset of those turns out to be the SOP. In this chapter we will look more

closely at those security requirements which result in the browser implement-

ing SOP. As it turns out, our verification in the Maude model shows that

these properties are true, and thus that IBOS indeed implements the SOP.

To model check this property in our browser model, we use the model

of the internal logic of the browser which we have mentioned already in

Section 4.2; it includes the policies being enforced by the kernel. We already

noted that all messages go through the kernel and thus are subject to being

checked with respect to the policies. We then also have to create canonical

messages that different components can try to send to each other. That

is, we need a small set of messages that is generic, so that the instances

of these generic messages can cover all messages. Then the model checking

analysis can in fact verify that none of those messages can reach disallowed

destinations.

Theorem 2 The Same-Origin Policy holds for any rewrite sequence, using

any number of trigger rule steps.

Proof. The proof consists of proving the properties (1)–(7) below. This is

done in the remainder of this section and in particular in Theorems 3–7. 2

Now that we have completed the high level overview of the SOP, we will

look at each of the properties that altogether make up SOP in the context

of IBOS one at a time. These properties are based on [117]:

73



1. The kernel must route network requests from web page instances to the

proper network process.

2. The kernel must route Ethernet frames from the network interface card

(NIC) to the proper network process.

3. Ethernet frames from network processes to the NIC must have an IP

address and TCP port that matches the origin of the network process.

4. HTTP data from network processes to web page instances must adhere

to the SOP.

5. Network processes for different web page instances must remain iso-

lated.

6. The browser chrome (UI elements) and web page content displays are

isolated.

7. Only the current tab can access the screen, mouse, and keyboard.

8. All components can only perform their designated functions.

9. The URL of the current tab is displayed to the user.

The SOP is given by properties (1)–(7). Property (8) is another good

property for IBOS, while property (9) aids in verifying property (7).

Let us look at the first property which is part of SOP:

• (1) The kernel must route network requests from web page instances to

the proper network process.

Simply said, each web page instance and each network process have an as-

sociated URL which identify them to the kernel, in addition to their actual

process id. This URL is the URL they are allowed to communicate with.

Now, whenever a web page instance tries to communicate with a network

process, the kernel checks the process id and associated URL for both. For

this purpose, the kernel stores a mapping of process id to URLs. If no ap-

propriate network process exists, a new one will be created by the kernel at

this point. In practice, the kernel (and its representation in our model) en-

forces that only matching processes communicate. For checking property (1)

74



we look at each message that is received by any network process and com-

pare the URLs of sender and receiver using the kernel’s mapping. Note that

sender and receiver names cannot be forged as these are their process ids and

enforced by the kernel based on the underlying guarantees of the operating

system.

Indeed, the execution for property (1) does not make use of a history of

what happened before, but only of the current assignment of each process to

URL. We abstract away from a long sequence of network requests to simply

one single network request. As the state is generic and the correctness of the

property only depends on one network request, if we can show the absence

of errors for this one network request, we know that any arbitrary number

of them still will not exhibit any errors. Otherwise, we could take just that

network request which triggers the error and use it to get the error by itself,

contradicting the fact that we show that no single message creates an error.

Checking property (1) then boils down to checking executions (up to some

depth of input), from canonical starting points, to see whether there is a mis-

match between URLs in the resulting configuration for any message. If there

is no mis-match for all starting points, then all communications have been

legal and property (1) is actually proved. We can limit the depth of execution,

i.e., the number of messages being considered, and still be complete. Each

message is generic and representative of a set of messages. The reason we can

limit the depth is that if the property would turn out to be possibly violated

at an arbitrary number of messages, then that final message triggering the

failure will only have one source process and one destination process. That

violation can then be boiled down to the triggering network request, and the

setup for those involved two processes, which would be a total depth of three

actions.

The following search, presented in simplified fashion, returns no solution,

meaning that no illegal (according to SOP) communication happened. Note

that L1, L1’, L2, L2’ are the URLs and N is the process id of a web app

and N’ is the process id of a network process.

search init =>*

X:Configuration

< N : pipe | incoming(msg(from(N’), to(N), L1), ...) , ... >

< kernel-id : kernel | ... ,

weblabels(pi(N’,L1’), ...) ,

75



networklabels(pi(N, L2’, L2), ...) >

such that L1 =/= L2 or L1’ =/= L2’ .

For this property, let us also show the actual search command with all

the detail, to give the reader a better idea of what this looks like.

search init-simp-kernel inspect-space =>*

X:Configuration

< N:Nat : pipe |

toKernel(ML:MessageList) ,

fromKernel(msg(OPOS-SYSCALL-FD-SEND-MESSAGE,

payload(Num:Nat, N:Nat, MSG-FETCH-URL,

V:MsgVal, L1:Label, T:typed, U:untyped)),

ML’:MessageList) , Att:AttributeSet >

< kernel-id : kernel | Att2:AttributeSet ,

weblabels(pi(Num:Nat,L1’:Label),

WAPIS:WebappProcInfoSet) ,

networklabels(pi(N:Nat, L2’:Label, L2:Label),

NPIS:NetworkProcInfoSet) ,

displayedTopBar(URL:Label) >

such that L1:Label =/= L2:Label or L1’:Label =/= L2’:Label .

As the above search did not return any solution, no illegal messages were

passed. All network requests indeed end up going to the proper network

processes.

Let us note here that weblabels and networklabels are the data struc-

tures which store the connection between URLs and web apps, and, respec-

tively, network processes. Indeed, pi contains the relation of one web app or

network process and the URL it is assigned to. In the case of the network

process there are two URLs, the first, which will exactly match that of the

associated web app, and the second, which is used for communication to the

outside. That URL may be the same as the first, or more specific.

After the above motivation, let us remind you of Lemma 1, so that we

only need to consider sequences of the form →T→!
I . . . →T→!

I . . . →T→∗I .
Looking at the search command for property (1) we see that there is one web

app with id Num:Nat and one network process with id N:Nat that impact a

violation. The web app Num:Nat is sending a message to the network process

N:Nat. For this, both the web app and the network process could have been

created by a single trigger rule step new-url(U) or by two separate such

trigger rule steps of form new-url(U). Of course there is again the last trigger

76



rule step that causes the violation, which can be of the form new-url(U)

and can create none, either one, or both the web app and network process in

question. Let us now give the formal theorem for the property (1):

Theorem 3 Property (1) holds for any rewrite sequence, using any number

of trigger rule steps.

Proof. The base case of at most 3 trigger rule steps is proven by the above

model-checking analysis. The reduction given in Lemma 3 then completes the

proof by reducing any violation of greater length to use at most 3 trigger rule

steps, so no violation can exist.

We now give the reduction lemma that assures as that all longer sequences

can be reduced to shorter ones:

Lemma 3 Any sequence of trigger rule steps that leads to a violation of

property (1) and uses 4 or more trigger rule steps can be reduced by a step.

This yields that all the possible trigger rule sequences leading to a violation

must be of length 3 or less.

Proof. For rewrite sequences with at most 3 trigger rule steps, the model-

checking via search has already proven that there are no violations. We now

assume our claim is incorrect. Then there must exist some sequence leading to

a violation. Let us pick any such sequence with the smallest possible number

of trigger rule steps being used, and let that number be L. Now note that

we are only considering L ≥ 4. We will now consider all the possible cases,

based on what the last trigger step can do.

First, let us assume that the last trigger step, called l, is of type

new-url(U) and creates both the web app with id Num:Nat and the network

process with id N:Nat. This means that there will be (at least) three further

trigger steps before l, due to L ≥ 4. Let us call these three steps k1, k2, k3

with k1; k2; k3; l being the end of the sequence of trigger steps that leads to the

violation.

Any switch-tab only changes the active web app, so if k1 (or k2) is a

switch-tab, then the result of that trigger rule step will be overwritten by

the following trigger rule step, so we can drop k1 (or k2) from the sequence

and the resulting sequence still leads to the same violation, but is one trigger

rule step shorter, which contradicts L being minimal.

77



So we know that k1 must be of form new-url(U) (otherwise we are back

in the prior case). Clearly, it can create neither of the two processes relevant

for the violation, as they are added at l. So whatever k1 added to the state

is just data that is being carried along and that has no effect on the violation

that will be found as it is not connected to the two processes in question.

Thus, we can shorten the sequence by dropping k1 and will still get the same

violation at the end, but with a shorter sequence, contradicting the minimality

of L.

Let us now assume that the last trigger rule step l is of type new-url(U)

and creates the web app Num:Nat but not the network process N:Nat. Then

there must be another trigger rule step new-url(U) that creates the network

process N:Nat, which we call l1.

Now l1 < l. Let us mark this part of the proof as (∗) as it will be reused.

As there are at least 4 trigger rule steps there need to be at least 2 more.

Case 1: There is a trigger rule step before l1, call the immediate prede-

cessor k. Then k < l1 < l. We now reason by cases:

• Trigger rule k is a switch-tab: This changes the active web app but

upon the execution of the trigger l1 and normalization by internal rules

all changes by this switch-tab are completely undone. So we can

remove this trigger, and the shorter sequence still leads to the same

violation, against the minimality of L.

• Trigger rule k is a new-url(U): Then k can create neither of the two

processes relevant for the violation, as they are added at l1 and l. So

whatever k adds to the state is just data that is being carried along

and that has no effect on the violation that will be found as it is not

connected to the two processes in question. Thus, we can shorten the

sequence by dropping k and will still get the same violation at the end,

but with a shorter sequence, against the minimality of L.

Case 2: All other triggers are between l1 and l: l1 < k1 < k2 < l.

• Any switch-tab only changes the active web app, so if k1 is of type

switch-tab, then the result of that trigger rule step will be overwritten

by the following trigger rule step, so we can drop k1 from the sequence

and the resulting sequence still leads to the same violation, but is one

trigger rule step shorter, which contradicts L being minimal.

78



• Trigger rule k1 has to be a new-url(U) (otherwise we are in the prior

case): Then k1 can create neither of the two processes relevant for the

violation, as they are added at l1 and l. So whatever k adds to the state

is just data that is being carried along and that has no effect on the

violation that will be found as it is not connected to the two processes

in question. Thus, we can shorten the sequence by dropping k and will

still get the same violation at the end, but with a shorter sequence,

contradicting L minimal.

Let us assume the last trigger rule step l is of type new-url(U) and creates

the network process N:Nat, but not the web app Num:Nat. Then the same

reasoning as for the prior analysis where l is creating the web app and not

the network process holds, as none of the proof steps needed that distinction.

Therefore we do not repeat all those arguments here.

In the last set of cases we assume that the last trigger step l creates neither

the web app Num:Nat, nor the network process N:Nat. So, l can be either a

new-url(U) or a switch-tab. There also needs to be either one trigger

step l0 that creates both processes (web app and network process), or separate

trigger steps creating one each, l1 for the web app Num:Nat and l2 for the

network process N:Nat. All of them are of the new-url(U) type.

First let us look at the case with a single trigger step creating both pro-

cesses. Then l0 < l. The case analysis we get is just like the one at (∗) above,

so we do not repeat all of those arguments here.

In the case of two trigger rule steps creating the two processes we have two

possibilities, l1 < l2 < l and l2 < l1 < l. We will look at l1 < l2 < l and note

that the other case works similarly, so we will omit it from this presentation.

There has to be at least one additional trigger step. If one exists before l1 we

pick the direct predecessor. Otherwise we pick a trigger step between l1 and

l2 (predecessor of l2) if such a one exists. Otherwise we pick the immediate

predecessor of l. We call this pick k.

Case 1: k < l1 < l2 < l

• Trigger rule k is a switch-tab: This changes the active web app but

upon the execution of the trigger l1 and normalization by internal rules

all changes by this switch-tab are completely undone. So we can

remove this trigger, and the shorter sequence still leads to the same

violation, contradicting L minimal.

79



• Trigger rule k is a new-url(U): Then k can create neither of the two

processes relevant for the violation, as they are added at l1 and l2. So

whatever k adds to the state is just data that is being carried along

and that has no effect on the violation that will be found as it is not

connected to the two processes in question. Thus, we can shorten the

sequence by dropping k and will still get the same violation at the end,

but with a shorter sequence, contradicting L minimal.

Case 2: l1 < k < l2 < l

• Trigger rule k is a switch-tab: This changes the active web app but

upon the execution of the trigger l2 and normalization by internal rules

all changes by this switch-tab are completely undone. So we can

remove this trigger, and the shorter sequence still leads to the same

violation, contradicting L minimal.

• Trigger rule k is a new-url(U): Then k can create neither of the two

processes relevant for the violation, as they are added at l1 and l2. So

whatever k adds to the state is just data that is being carried along

and that has no effect on the violation that will be found as it is not

connected to the two processes in question. Thus, we can shorten the

sequence by dropping k and will still get the same violation at the end,

but with a shorter sequence, contradicting L minimal.

Case 3: l1 < l2 < k < l

• Trigger rule k is a new-url(U). Pick k to be this if there is any such

new-url(U) between l2 and l. Then k can create neither of the two

processes relevant for the violation, as they are added at l1 and l2. So

whatever k adds to the state is just data that is being carried along

and that has no effect on the violation that will be found as it is not

connected to the two processes in question. Thus, we can shorten the

sequence by dropping k and will still get the same violation at the end,

but with a shorter sequence, a contradiction.

• Trigger rule k is a switch-tab. Now note that there are only the two

web apps created by l1 and l2 as in case there is another new-url(U)

trigger step we are in the case before. If there is more than one trigger

of type switch-tab here, all but the last can be dropped as they are

80



overwritten right away, and we would have a shorter sequence leading

to the same violation, a contradiction.

This means that there is only one switch-tab between l2 and l, at

k. It either makes the web app of l1 or the web app of l2 the active

one. If it makes l2 active, then k can be dropped as it is superfluous

and makes active the process which is already active, and we have the

shorter sequence l1; l2; l leading to the violation, a contradiction.

If k makes l1 active then we can just reorder the sequence to be l2; l1; l

while dropping k, as it would then again make the active web app active,

which is not needed, so we get a contradiction.

So, in each case we have shown that there is a sequence one shorter, which

still violates the property. This is in contradiction to our assumption that we

have picked the sequence with the smallest number of triggers, L. 2

With the reduction explained in the proof, we have extended the model-

checking proof for sequences with at most three triggers, to sequences with

any number of triggers.

The next SOP property is:

• (2) The kernel must route Ethernet frames from the network interface

card (NIC) to the proper network process.

Similarly to (1), the kernel knows which URL a network process is al-

lowed to communicate with. The following search is designed to check that

only acceptably sourced data from the NIC gets transmitted to the network

process.

search init-simp-kernel inspect-space =>*

X:Configuration

< N:Nat : mem | in(L1:Label, Ll:LabelList),

Att:AttributeSet >

< kernel-id : kernel |

networklabels(pi(N:Nat, L’:Label, L2:Label),

NPIS:NetworkProcInfoSet) ,

Att2:AttributeSet >

such that L1:Label =/= L2:Label .

Here, L2:Label is the URL that the network process N is allowed to com-

municate with, and N:Nat : mem represents the network process N memory,

81



used for receipt of Ethernet frames. With no mismatch between the URL it

is allowed to receive and the source of the data, we know that property (2)

is maintained. The search started that way indeed returns no solution.

Based on this motivation let us give our formal theorem for the prop-

erty (2):

Theorem 4 Property (2) holds for any rewrite sequence, using any number

of trigger rule steps.

Proof. The base case of at most 3 trigger rule steps is proven by the above

model-checking analysis. The reduction given in Lemma 4 then completes the

proof by reducing any violation of greater length to use at most 3 trigger rule

steps, so no violation can exist.

We now give the reduction lemma that assures as that all longer sequences

can be reduced to shorter ones:

Lemma 4 Any sequence of trigger rule steps that leads to a violation of

property (2) and uses 4 or more trigger rule steps can be reduced by a step.

This yields that all the possible trigger rule sequences leading to a violation

must be of length 3 or less.

Proof. For rewrite sequences with at most 3 trigger rule steps, the model-

checking via search has already proven that there are no violations. We now

assume our claim is incorrect. Then there must be some sequence leading to

a violation. Let us pick any such sequence with the smallest possible number

of trigger rule steps being used, and let that number be L. Now note that we

must have L ≥ 4. We will now consider all the possible cases, based on what

the last trigger step can do.

For a violation to possibly occur there need to be two different URLs

available, both of which get generated by different trigger rule steps of type

new-url(U). Now the last trigger step, called l, can be either of the two

new-url(L1:Label) and new-url(L2:Label), or, alternatively, does not

add either of the two URLs. In that case it can be of type new-url(U) with

U neither of those URLs, or it can be of type switch-tab.

First, let us deal with the case where l is new-url(L1:Label). The case

where l is new-url(L2:Label) works just the same, so we do not spell

that case out. In this case there needs to be one other trigger rule step

82



new-url(L2:Label), whose last appearance we call l1. Of course we know

l1 < l. As there are at least 4 trigger rule steps, there need to be at least 2

more.

Case 1: k < l1 < l, meaning there is a trigger rule step before l1, call the

immediate predecessor k.

• Trigger rule k is a switch-tab. As there is no violation during ex-

ecution of k and the following normalization, all traces of k will be

eliminated during the following execution (and normalization) of l1. So

we can remove this trigger and the shorter sequence still leads to the

same violation, a contradiction.

• Trigger rule k is a new-url(U): Using this trigger rule step does in-

crease the state space size by adding all the pieces mentioned before in

the description of what such a trigger does. Now, if U 6= L1:Label and

U 6= L2:Label, then all additions are part of the state, but no violation

occurs here. Whatever k added is just data being carried along in the

state that has no effect on the violation that will be found as it is for

a different URL. Thus, we can shorten the sequence by dropping this

trigger k and will get the same violation at the end, but with a shorter

sequence, a contradiction.

In case that U = L1:Label, then this is duplicating the later step l,

in which case we only need the last one of the two appearances, and

can drop the trigger k and have a sequence one shorter with the same

resulting violation, a contradiction.

In case that U = L2:Label, then this is duplicating the immediately

following step l1, in which case we also only need the last of the two

appearances, and can thus drop the trigger k to get a sequence that is

one shorter, which has the same resulting violation, a contradiction.

Case 2: l1 < k < l. There are no triggers before l1, but there can be multi-

ple additional trigger rule steps between l1 and l. If there is any new-url(U)

type trigger, we pick the last of them as k. If there are only switch-tab

triggers, we pick the immediate predecessor of l for k.

• Trigger rule step k is new-url(U): Using this trigger rule step does

increase the state space size by adding all the pieces mentioned before

83



in the description of what such a trigger does. Now, if U 6= L1:Label

and U 6= L2:Label, then all the additions are part of the state, but no

violation occurs here. Whatever k added is just data being carried along

in the state that has no effect on the violation that will be found as it

is for a different URL. Thus, we can shorten the sequence by dropping

this trigger k and will get the same violation at the end, but with a

shorter sequence, a contradiction.

In case U = L1:Label, then this is duplicating the next step l, in which

case we only need the last of the two, and can again drop trigger k to

get a sequence that is one shorter but leads to the same violation, a

contradiction.

In case U = L2:Label, then this would be duplicating the prior step l1.

But, we had picked l1 to be the last such trigger rule step, so we have a

contradiction and this case is moot.

• Trigger rule k is a switch-tab: This changes the active web app im-

mediately before the step l which creates the violation. Let us first em-

phasize that there are no new-url(U) triggers in the sequence except

for l1. All the triggers between l1 and l are of the switch-tab form,

otherwise we are in the prior case.

If there are multiple such triggers, then in addition to k directly before

l, there is another one, call it m. Now, trigger m and all its changes

will be completely undone by trigger k. So, trigger m is not needed,

and removing trigger m will still yield the exact same violation, a con-

tradiction.

If there is only one such trigger, then we have l1; k; l as the sequence

giving the violation. k can change the active web app but there is only

one (created by l1) and it is already active, so we can drop k and have

a shorter sequence leading to the violation, a contradiction.

Now we look at the case where l does not add either of the two URLs

in question. In this case there need to be two other trigger rule steps in the

sequence. We call l1 the last appearance of new-url(L1:Label), and we call

l2 the last appearance of new-url(L2:Label). Now there are two cases that

work just the same, depending on l1 < l2 or l2 < l1. We will give in detail

the case l1 < l2. We will look at additional trigger rule steps k, first if there

84



are any before l1, then if there are none before l1 but some between l1 and l2,

and otherwise with them between l2 and l. As usual we pick the immediate

predecessors of other steps for k.

Case 1: k < l1 < l2 < l. Given multiple additional trigger rule steps

before l1, we pick k to be the immediate predecessor of l1.

• Trigger rule step k is a switch-tab: This changes the active web app

immediately before introducing the URL in l1 which appears in the vi-

olation. Upon the execution of the trigger in l1 and normalization by

the internal rules, all changes made by this switch-tab are completely

undone, and as there was no violation here (or we would have a shorter

sequence already) we can drop this switch-tab trigger from our list of

triggers to be executed, and will reach the same violation at the end of

the sequence which is now one step shorter, a contradiction.

• Trigger rule step k is a new-url(U): Using this trigger rule step does

increase the state space size by adding all the pieces mentioned before

in the description of what such a trigger does. Now, if U 6= L1:Label

and U 6= L2:Label, then all the additions are part of the state, but

no violation occurs here. Whatever k added is just data being carried

along in the state that has no effect on the violation that will be found

later as it is for a different URL. Thus, we can shorten the sequence by

dropping this trigger k and will get the same violation at the end, but

with a shorter sequence, a contradiction.

In case U = L1:Label, then the following step l1 will duplicate that

trigger step, in which case we only need the last one of the two, and

can again drop the trigger k and have a sequence that is one shorter

with the same resulting violation, a contradiction.

In case U = L2:Label, then the step l2 which happens later will dupli-

cate it, and again we only need the last one, so we can drop this trigger

and the resulting sequence will give rise to the same violation but be

one shorter, a contradiction.

Case 2: l1 < k < l2 < l. We pick the immediate predecessor of l2 for

k, in case there are multiple additional trigger rule steps between l1 and l2.

This works similar to case 1.

85



• Trigger rule step k is a switch-tab: This changes the active web app

immediately before introducing the URL in l2 which appears in the vi-

olation. Upon the execution of the trigger in l2 and normalization by

the internal rules, all changes made by this switch-tab are completely

undone, and as there was no violation here (or we would have a shorter

sequence already) we can drop this switch-tab trigger from our list of

triggers to be executed, and will reach the same violation at the end of

the sequence which is now one step shorter, a contradiction.

• Trigger rule step k is a new-url(U): Using this trigger rule step does

increase the state space size by adding all the pieces mentioned before

in the description of what such a trigger does. Now, if U 6= L1:Label

and U 6= L2:Label, then all the additions are part of the state, but no

violation occurs here. Whatever k added is just data being carried in

the state that has no effect on the violation that will be found later as it

is for a different URL. Thus, we can shorten the sequence by dropping

this trigger k and will get the same violation at the end, but with a

shorter sequence, a contradiction.

In case U = L1:Label, then this is duplicating the earlier step l1. But,

we picked l1 to be the last such trigger rule step, so this is a contradic-

tion and this case is moot.

In case U = L2:Label, then the following step l2 will duplicate that

trigger step, in which case we only need the last one of the two, and

can again drop the trigger k and have a sequence that is one shorter

with the same resulting violation, a contradiction.

Case 3: l1 < l2 < k < l. There can be multiple additional trigger rule

steps between l2 and l. If there is any new-url(U) type trigger, we pick the

last one of them as k. If there are only switch-tab triggers, we pick the

immediate predecessor of l for k.

• Trigger rule step k is a new-url(U): Using this trigger rule step does

increase the state space size by adding all the pieces mentioned before

in the description of what such a trigger does. Now, if U 6= L1:Label

and U 6= L2:Label, then all the additions are part of the state, but no

violation occurs here. Whatever k added is just data being carried in

the state that has no effect on the violation that will be found as it is

86



for a different URL. Thus, we can shorten the sequence by dropping

this trigger step k and will get the same violation at the end, but with

a shorter sequence, a contradiction.

In case U = L1:Label, then this is duplicating the prior step l1. We

stated earlier that we pick l1 to be the last appearance of trigger rule

step new-url(L1:Label), so this case is moot.

In case U = L2:Label, then this is duplicating the prior step l2. We

stated earlier that we pick l2 to be the last appearance of trigger rule

step new-url(L2:Label), so this case is also moot.

• Trigger rule step k is a switch-tab: This changes the active web app

immediately before the step l which creates the violation. Let us first

emphasize that there are no new-url(U) triggers in the sequence except

for l1 and l2. All the triggers between l2 and l are of the switch-tab

form.

If there are multiple such triggers, then in addition to k directly before

l there is another one, call it m. Now, trigger m and all its changes

will be completely undone by trigger k. So, trigger m is not needed,

and removing trigger m will still yield the exact same violation, a con-

tradiction.

If there is only one such trigger, then we have l1; l2; k;n as the sequence

giving a violation. But, then k can only switch the active tab to either

the web app associated to l1 or l2. In the case of k making the web app

of l1 the active one, we get the same result by moving l1 to the spot of k

in the order and dropping k, that is, l2; l1;n will yield the violation and

be shorter, giving us a contradiction. On the other hand, if k makes

the web app of l2 active, that is not needed, as it already is the active

one at that point. So l1; l2;n will similarly yield the violation and it is

shorter, another contradiction.

So, in each case we have shown that there is a sequence one shorter, which

still violates the property. This is in contradiction to our assumption that we

have picked the sequence with the smallest number of triggers, L. 2

With the reduction explained in the proof, we have extended the model-

checking proof for sequences with at most three triggers, to sequences with

any number of triggers.

87



Another SOP property is:

• (3) Ethernet frames from network processes to the NIC must have an IP

address and TCP port that matches the origin of the network process.

Outgoing Ethernet frames are created by the network process, but are

then checked by the kernel for a match between the included URL and the

URL associated to the network process. In the search command below, the

check is on the outgoing memory of the network process, before it is being sent

out. It indeed looks at the URL the Ethernet frame will be sent to, L1:Label

noted in out, and checks that against the network process associated URL,

L2:Label.

search init-simp-kernel inspect-space =>*

X:Configuration

< N:Nat : mem | out(L1:Label) , Att:AttributeSet >

< kernel-id : kernel |

networklabels(pi(N:Nat, L’:Label, L2:Label),

NPIS:NetworkProcInfoSet) ,

Att2:AttributeSet >

such that L1:Label =/= L2:Label .

The search does not find a state, which means that there is no mis-match.

Again, there is no history to consider here, so a single such outgoing message

is either correct, or not. Based on this motivation let us give our formal

theorem for the property (3):

Theorem 5 Property (3) holds for any rewrite sequence, using any number

of trigger rule steps.

Proof. The base case of at most 3 trigger rule steps is proven by the above

model-checking analysis. The reduction given in Lemma 5 then completes the

proof by reducing any violation of greater length to use at most 3 trigger rule

steps, so no violation can exist.

We now give the reduction lemma that assures as that all longer sequences

can be reduced to shorter ones:

Lemma 5 Any sequence of trigger rule steps that leads to a violation of

property (3) and uses 4 or more trigger rule steps can be reduced by a step.

This yields that all the possible trigger rule sequences leading to a violation

must be of length 3 or less.

88



Proof. The proof is identical to the one given for property (2), i.e., for

Lemma 4. The difference between property (2) and property (3) is whether

the Ethernet frame is incoming or outgoing, but that difference was not needed

in the proof of property (2). 2

The last two theorems have proved that all Ethernet frame handling is

according to what SOP allows.

Consider the SOP property:

• (4) HTTP data from network processes to web page instances must

adhere to the SOP.

By this we mean that the HTTP data that is transmitted has to be from

allowable sources for both the sending network process and the receiving web

app. In this case we check that the return message from a network process

to a web page instance only contains data from an appropriate source, i.e.,

the labeling for the web app, network process and the data match.

search init-simp-kernel inspect-space

=>*

X:Configuration

< N:Nat : proc | rendered(Lll:Label) , URL(L’’:Label) ,

loading(1) , Att:AttributeSet >

< N:Nat : pipe | fromKernel(

msg(OPOS-SYSCALL-FD-SEND-MESSAGE,

payload(N’:Nat, N:Nat, MSG-RETURN-URL, V:MsgVal,

L2:Label, T:typed, U:untyped)),

ML:MessageList) , Att2:AttributeSet >

< kernel-id : kernel |

weblabels(pi(N:Nat, L’:Label), WAPIS:WebappProcInfoSet) ,

networklabels(pi(N’:Nat, L’:Label, L1:Label),

NPIS:NetworkProcInfoSet) ,

Att3:AttributeSet >

such that L1:Label =/= L2:Label .

This model-checking search does not find any result, so we know that

property (4) holds. No history is required for this and the important URLs

here are L1:Label and L2:Label. If they disagree that would have been a

violation. Based on this motivation let us give our formal theorem for the

property (4):

89



Theorem 6 Property (4) holds for any rewrite sequence, using any number

of trigger rule steps.

Proof. The base case of at most 3 trigger rule steps is proven by the above

model-checking analysis. The reduction given in Lemma 6 then completes the

proof by reducing any violation of greater length to use at most 3 trigger rule

steps, so no violation can exist.

We now give the reduction lemma that assures as that all longer sequences

can be reduced to shorter ones:

Lemma 6 Any sequence of trigger rule steps that leads to a violation of

property (4) and uses 4 or more trigger rule steps can be reduced by a step.

This yields that all the possible trigger rule sequences leading to a violation

must be of length 3 or less.

Proof. For rewrite sequences with at most 3 trigger rule steps, the model-

checking via search has already proven that there are no violations. We now

assume our claim is incorrect, then there must be some sequences leading to

a violation. Let us pick any such sequence with the smallest possible number

of trigger rule steps being used, and let that number be L. Now note that we

must have L ≥ 4. We will now consider all the possible cases, based on what

the last trigger step can do.

For a violation to possibly occur there need to be two different URLs

available, both of which get generated by different trigger rule steps of type

new-url(U). Now the last trigger step, called l, can be either of the two

new-url(L1:Label) and new-url(L2:Label), or alternatively does not add

either of the two URLs. In that case it can be of type new-url(U) with U

neither of those URLs, or it can be of type switch-tab. This proof is very

similar to that of Theorem 4. The fact that this time we are checking the

return data from a network process to a web app instead of the actual Eth-

ernet frame correctness mostly disappears at this point, as these are just two

different steps in the same chain of data transmission anyway.

First, we look at the case where l does not add either of the two URLs

in question. In this case there need to be two other trigger rule steps in the

sequence. We call l1 the last appearance of new-url(L1:Label), and we call

l2 the last appearance of new-url(L2:Label). Now there are two cases that

work just the same, depending on l1 < l2 or l2 < l1. We treat in detail the

90



case l1 < l2. We will look at additional trigger rule steps k, first if there are

any before l1, then if there are none before l1 but some between l1 and l2,

and otherwise with them between l2 and l. As usual we pick the immediate

predecessors of other steps for k.

Case 1: k < l1 < l2 < l. Given multiple additional trigger rule steps

before l1, we pick k to be the immediate predecessor of l1.

• Trigger rule step k is a switch-tab: This changes the active web app

immediately before introducing the URL in l1 which appears in the vi-

olation. Upon the execution of the trigger in l1 and normalization by

the internal rules, all changes made by this switch-tab are completely

undone, and as there was no violation here (or we would have a shorter

sequence already) we can drop this switch-tab trigger from our list of

triggers to be executed, and will reach the same violation at the end of

the sequence which is now one step shorter, a contradiction.

• Trigger rule step k is a new-url(U): Using this trigger rule step does

increase the state space size by adding all the pieces mentioned before

in the description of what such a trigger does. Now, if U 6= L1:Label

and U 6= L2:Label, then all the additions are part of the state, but

no violation occurs here. Whatever k added is just data being carried

along in the state that has no effect on the violation that will be found

later as it is for a different URL. Thus, we can shorten the sequence by

dropping this trigger k and we will get the same violation at the end,

but with a shorter sequence, a contradiction.

In case U = L1:Label, then the following step l1 will duplicate that

trigger step, so that we only need the last one of the two, and can again

drop the trigger k and have a sequence that is one shorter with the same

resulting violation, a contradiction.

In case U = L2:Label, then the step l2 which happens later will dupli-

cate it, and again we only need the last one, so we can drop this trigger

and the resulting sequence will give rise to the same violation but be

one shorter, a contradiction.

Case 2: l1 < k < l2 < l. We pick the immediate predecessor of l2 for

k, in case there are multiple additional trigger rule steps between l1 and l2.

This works similar to case 1.

91



• Trigger rule step k is a switch-tab: This changes the active web app

immediately before introducing the URL in l2 which appears in the vi-

olation. Upon the execution of the trigger in l2 and normalization by

the internal rules, all changes made by this switch-tab are completely

undone, and as there was no violation here (or we would have a shorter

sequence already) we can drop this switch-tab trigger from our list of

triggers to be executed, and will reach the same violation at the end of

the sequence which is now one step shorter, a contradiction.

• Trigger rule step k is a new-url(U): Using this trigger rule step does

increase the state space size by adding all the pieces mentioned before

in the description of what such a trigger does. Now, if U 6= L1:Label

and U 6= L2:Label, then all the additions are part of the state, but

no violation occurs here. Whatever k added is just data being carried

along in the state that has no effect on the violation that will be found

later as it is for a different URL. Thus, we can shorten the sequence by

dropping this trigger k and will get the same violation at the end, but

with a shorter sequence, a contradiction.

In case U = L1:Label, then this is duplicating the earlier step l1. But,

we picked l1 to be the last such trigger rule step, so this is a contradic-

tion and this case is moot.

In case U = L2:Label, then the following step l2 will duplicate that

trigger step, in which case we only need the last one of the two, and

can again drop the trigger k and have a sequence that is one shorter

with the same resulting violation, a contradiction.

Case 3: l1 < l2 < k < l. There can be multiple additional trigger rule

steps between l2 and l. If there is any new-url(U) type trigger, we pick the

last one of them as k. If there are only switch-tab triggers, we pick the

immediate predecessor of l for k.

• Trigger rule step k is a new-url(U): Using this trigger rule step does

increase the state space size by adding all the pieces mentioned before

in the description of what such a trigger does. Now, if U 6= L1:Label

and U 6= L2:Label, then all the additions are part of the state, but no

violation occurs here. Whatever k added is just data being carried along

in the state that has no effect on the violation that will be found as it

92



is for a different URL. Thus, we can shorten the sequence by dropping

this trigger step k and will get the same violation at the end, but with

a shorter sequence, a contradiction.

In case U = L1:Label, then this is duplicating the prior step l1. We

stated earlier that we pick l1 to be the last appearance of the trigger rule

step new-url(L1:Label), so this case is moot.

In case U = L2:Label, then this is duplicating the prior step l2. We

stated earlier that we pick l2 to be the last appearance of the trigger rule

step new-url(L2:Label), so this case is also moot.

• Trigger rule step k is a switch-tab: This changes the active web app

immediately before the step l which creates the violation. Let us first

emphasize that there are no new-url(U) triggers in the sequence except

for l1 and l2. All the triggers between l2 and l are of the switch-tab

form.

If there are multiple such triggers, then in addition to k directly before

l there is another one, call it m. Now, trigger m and all its changes

will be completely undone by trigger k. So, trigger m is not needed,

and removing trigger m will still yield the exact same violation, a con-

tradiction.

If there is only one such trigger, then we have l1; l2; k;n as the sequence

giving a violation. But, then k can only switch the active tab to either

the web app associated to l1 or l2. In the case of k making the web app

of l1 the active one, we get the same result by moving l1 to the spot of k

in the order and dropping k, that is, l2; l1;n will yield the violation and

be shorter. On the other hand, if k makes the web app of l2 active, that

is not needed, as it already is the active one at that point. So l1; l2;n

will similarly yield the violation and it is shorter, a contradiction.

Now, let us deal with the case where l is new-url(L1:Label). The case

where l is new-url(L2:Label) works just the same, so we do not spell

that case out. In this case there needs to be one other trigger rule step

new-url(L2:Label), whose last appearance we call l1. Of course we know

l1 < l. As there are at least 4 trigger rule steps, there need to be at least 2

more.

93



Case 1: k < l1 < l, meaning that there is a trigger rule step before l1, call

the immediate predecessor k.

• Trigger rule k is a switch-tab. As there is no violation during ex-

ecution of k and the following normalization, all traces of k will be

eliminated during the following execution (and normalization) of l1. So

we can remove this trigger and the shorter sequence still leads to the

same violation, a contradiction.

• Trigger rule k is a new-url(U): Using this trigger rule step does in-

crease the state space size by adding all the pieces mentioned before in

the description of what such a trigger does. Now, if U 6= L1:Label and

U 6= L2:Label, then all additions are part of the state, but no violation

occurs here. Whatever k added is just data being carried along in the

state that has no effect on the violation that will be found as it is for

a different URL. Thus, we can shorten the sequence by dropping this

trigger k and will get the same violation at the end, but with a shorter

sequence, a contradiction.

In case U = L1:Label, then this is duplicating the later step l, in which

case we only need the last one of the two appearances, and can drop

the trigger k and have a sequence one shorter with the same resulting

violation, a contradiction.

In case U = L2:Label, then this is duplicating the immediately follow-

ing step l1, in which case we also only need the last of the two appear-

ances, and can thus drop the trigger k to get a sequence that is one

shorter, which has the same resulting violation, a contradiction.

Case 2: l1 < k < l. There are no triggers before l1, but there can be multi-

ple additional trigger rule steps between l1 and l. If there is any new-url(U)

type trigger, we pick the last of them as k. If there are only switch-tab

triggers, we pick the immediate predecessor of l for k.

• Trigger rule step k is new-url(U): Using this trigger rule step does

increase the state space size by adding all the pieces mentioned before

in the description of what such a trigger does. Now, if U 6= L1:Label

and U 6= L2:Label, then all the additions are part of the state, but no

violation occurs here. Whatever k added is just data being carried along

94



in the state that has no effect on the violation that will be found as it

is for a different URL. Thus, we can shorten the sequence by dropping

this trigger k and will get the same violation at the end, but with a

shorter sequence, a contradiction.

In case U = L1:Label, then this is duplicating the next step l, in which

case we only need the last of the two, and can again drop trigger k to

get a sequence that is one shorter but leads to the same violation, a

contradiction.

In case U = L2:Label, then this would be duplicating the prior step l1.

But, we had picked l1 to be the last such trigger rule step, so we have a

contradiction and this case is moot.

• Trigger rule k is a switch-tab: This changes the active web app im-

mediately before the step l which creates the violation. Let us first em-

phasize that there are no new-url(U) triggers in the sequence except

for l1. All the triggers between l1 and l are of the switch-tab form,

otherwise we are in the prior case.

If there are multiple such triggers, then in addition to k directly before

l, there is another one, call it m. Now, trigger m and all its changes

will be completely undone by trigger k. So, trigger m is not needed,

and removing trigger m will still yield the exact same violation, a con-

tradiction.

If there is only one such trigger, then we have l1; k; l as the sequence

giving the violation. k can change the active web app but there is only

one (created by l1) and it is already active, so we can drop k and have

a shorter sequence leading to the violation, another contradiction.

So, in each case we have shown that there is a sequence one shorter, which

still violates the property. This is in contradiction to our assumption that we

have picked the sequence with the smallest number of triggers, L. 2

Regarding the SOP property:

• (5) Network processes for different web page instances must remain

isolated.

By virtue of the afore mentioned labeling we have for all web apps and

network processes, each network process can only communicate with the right

95



web page instances. Simply by construction of our model (all messages going

through the kernel) there is no way for network processes to communicate

with each other directly. Therefore the isolation of network processes holds.

Consider now the SOP property:

• (6) The browser chrome (UI elements) and web page content displays

are isolated.

This property easily holds in the model, due to its construction. The

web page content is represented in displayedContent(...) of the process

representing the display < display-id : ... >, while the UI elements

are part of the kernel, in particular displayedTopBar for the address bar,

see Section 4.3.2.

Last SOP property:

• (7) Only the current tab can access the screen, mouse, and keyboard.

For this property, let us note that all input is given to the kernel, which

in turn passes it to the active web app. We have not explicitly modeled a

mouse or keyboard. With regards to the screen, we ask you to look below at

property (9) and realize that property (7) is a corollary of property (9) and

the address bar correctness.

General good property:

• (8) All components can only perform their designated functions.

This property holds in the model, as that is the way it was built. The

design of each component as captured in the model is exactly that set of

designated functions, only.

Last property:

• (9) The URL of the current tab is displayed to the user.

To relate this to (7), let us note that the current tab is representative of

the active web app, which has control of the screen, and that we take this

property to actually mean the stronger property that the screen contents are

also of the currently active web app whenever the screen is not about-blank.

search init-simp-kernel inspect-space =>*

X:Configuration

96



< kernel-id : kernel | Att:AttributeSet ,

displayedTopBar(URL:Label) >

< display-id : proc |

activeWebapp(W:ProcId),

Att2:AttributeSet >

< W:ProcId : proc |

URL(URL’:Label),

Att3:AttributeSet >

such that URL:Label =/= URL’:Label .

Indeed, the URL associated to the active web app is being presented to

the user in the address bar (displayedTopBar).

Based on this motivation let us give our formal theorem for the prop-

erty (9):

Theorem 7 Property (9) holds for any rewrite sequence, using any number

of trigger rule steps.

Proof. The base case of at most 3 trigger rule steps is proven by the above

model-checking analysis. The reduction given in Lemma 7 then completes the

proof by reducing any violation of greater length to use at most 3 trigger rule

steps, so no violation can exist.

We now give the reduction lemma that assures as that all longer sequences

can be reduced to shorter ones:

Lemma 7 Any sequence of trigger rule steps that leads to a violation of

property (9) and uses 4 or more trigger rule steps can be reduced by a step.

This yields that all the possible trigger rule sequences leading to a violation

must be of length 3 or less.

Proof. For rewrite sequences with at most 3 trigger rule steps, the model-

checking via search has already proven that there are no violations. We now

assume our claim is incorrect. Then there must be some sequences leading to

a violation. Let us pick any such sequence with the smallest possible number

of trigger rule steps being used, and let that number be L. Now note that we

must have L ≥ 4. We will now consider all the possible cases, based on what

the last trigger step can do.

To make a violation possible there need to be two different URLs, cre-

ated by two different new-url(U) trigger rule uses. One appears in the ad-

dress bar, while the other is the source URL for the web app that is cur-

rently active. The last trigger rule l can thus either be a switch-tab, a

97



new-url(URL:Label), a new-url(URL’:Label) (the active web app’s URL)

or a different trigger rule of type new-url(U). There will then be one or two

further new-url(U) type trigger rule steps.

First, we consider l to be switch-tab, which means there are two other

trigger rule steps. We call l1 the last step new-url(URL:Label) and we call

l2 the last step new-url(URL’:Label). Now either l1 < l2 or l2 < l1. We

only spell out the case l1 < l2, as the other works just the same. So, we have

l1 < l2 < l.

Case 1: k < l1 < l2 < l. Given multiple additional trigger rule steps

before l1, we pick k to be the immediate predecessor of l1.

• Trigger rule step k is a switch-tab: This changes the active web app

immediately before introducing the URL in l1 which appears in the vi-

olation. Upon the execution of the trigger in l1 and normalization by

the internal rules, all changes made by this switch-tab are completely

undone, and as there was no violation here (or we would have a shorter

sequence already) we can drop this switch-tab trigger from our list of

triggers to be executed, and will reach the same violation at the end of

the sequence which is now one step shorter, a contradiction.

• Trigger rule step k is a new-url(U): Using this trigger rule step does

increase the state space size by adding all the pieces mentioned before

in the description of what such a trigger does. Now, if U 6= URL:Label

and U 6= URL’:Label, then all the additions are part of the state, but

no violation occurs here. Whatever k added is just data being carried

along in the state that has no effect on the violation that will be found

later as it is for a different URL. Thus, we can shorten the sequence by

dropping this trigger k and we will get the same violation at the end,

but with a shorter sequence, a contradiction.

In case U = URL:Label, then the following step l1 will duplicate that

trigger step, in which case we only need the last one of the two, and

can again drop the trigger k and have a sequence that is one shorter

with the same resulting violation, a contradiction.

In case U = URL’:Label, then the step l2 which happens later will

duplicate it, and again we only need the last one, so we can drop this

trigger and the resulting sequence will give rise to the same violation

98



but be one shorter, a contradiction.

Case 2: l1 < k < l2 < l. We pick the immediate predecessor of l2 for

k, in case there are multiple additional trigger rule steps between l1 and l2.

This works similar to case 1.

• Trigger rule step k is a switch-tab: This changes the active web app

immediately before introducing the URL in l2 which appears in the vi-

olation. Upon the execution of the trigger in l2 and normalization by

the internal rules, all changes made by this switch-tab are completely

undone, and as there was no violation here (or we would have a shorter

sequence already) we can drop this switch-tab trigger from our list of

triggers to be executed, and will reach the same violation at the end of

the sequence which is now one step shorter, a contradiction.

• Trigger rule step k is a new-url(U): Using this trigger rule step does

increase the state space size by adding all the pieces mentioned before

in the description of what such a trigger does. Now, if U 6= URL:Label

and U 6= URL’:Label, then all the additions are part of the state, but

no violation occurs here. Whatever k added is just data being carried

along in the state that has no effect on the violation that will be found

later as it is for a different URL. Thus, we can shorten the sequence by

dropping this trigger k and will get the same violation at the end, but

with a shorter sequence, a contradiction.

In case U = URL:Label, then this is duplicating the earlier step l1.

But, we picked l1 to be the last such trigger rule step, so this is a

contradiction and this case is moot.

In case U = URL’:Label, then the following step l2 will duplicate that

trigger step, in which case we only need the last one of the two, and

can again drop the trigger k and have a sequence that is one shorter

with the same resulting violation, a contradiction.

Case 3: l1 < l2 < k < l. There can be multiple additional trigger rule

steps between l2 and l. If there is any new-url(U) type trigger, we pick the

last one of them as k. If there are only switch-tab triggers, we pick the

immediate predecessor of l for k.

99



• Trigger rule step k is a new-url(U): Using this trigger rule step does

increase the state space size by adding all the pieces mentioned before

in the description of what such a trigger does. Now, if U 6= L1:Label

and U 6= L2:Label, then all the additions are part of the state, but no

violation occurs here. Whatever k added is just data being carried along

in the state that has no effect on the violation that will be found as it

is for a different URL. Thus, we can shorten the sequence by dropping

this trigger step k and will get the same violation at the end, but with

a shorter sequence, a contradiction.

In case U = L1:Label, then this is duplicating the prior step l1. We

stated earlier that we pick l1 to be the last appearance of the trigger rule

step new-url(L1:Label), so this case is moot.

In case U = L2:Label, then this is duplicating the prior step l2. We

stated earlier that we pick l2 to be the last appearance of the trigger rule

step new-url(L2:Label), so this case is also moot.

• Trigger rule step k is a switch-tab: This changes the active web app

immediately before the step l which creates the violation. Let us first

emphasize that there are no new-url(U) triggers in the sequence except

for l1 and l2. All the triggers between l2 and l are of the switch-tab

form.

If there are multiple such triggers, then in addition to k directly before

l there is another one, call it m. Now, trigger m and all its changes

will be completely undone by trigger k. So, trigger m is not needed,

and removing trigger m will still yield the exact same violation, a con-

tradiction.

If there is only one such trigger, then we have l1; l2; k; l as the sequence

giving a violation. But, then k can only switch the active tab to either

the web app associated to l1 or l2. In the case of k making the web app

of l1 the active one, we get the same result by moving l1 to the spot of

k in the order and dropping k, that is, l2; l1;n will yield the violation

and be shorter, yielding a contradiction. On the other hand, if k makes

the web app of l2 active, that is not needed, as it already is the active

one at that point. So l1; l2;n will similarly yield the violation and it is

shorter, another contradiction.

100



Now we consider l to be new-url(URL:Label), then there will be another

trigger rule step l1 of the form new-url(URL’:Label). Other trigger rule

steps can happen before or after l1. If there are any before l1 we pick from

there for k, only otherwise do we look after l1.

Case 1: k < l1 < l. We pick the immediate predecessor of l1 for k in case

there are multiple trigger rules before l1.

• Trigger rule k is a switch-tab. As there is no violation during ex-

ecution of k and the following normalization, all traces of k will be

eliminated during the following execution (and normalization) of l1. So

we can remove this trigger and the shorter sequence still leads to the

same violation, a contradiction.

• Trigger rule k is a new-url(U): Using this trigger rule step does in-

crease the state space size by adding all the pieces mentioned before in

the description of what such a trigger does. Now, if U 6= URL:Label

and U 6= URL’:Label, then all additions are part of the state, but no

violation occurs here. Whatever k added is just data being carried along

in the state that has no effect on the violation that will be found as it

is for a different URL. Thus, we can shorten the sequence by dropping

this trigger k and will get the same violation at the end, but with a

shorter sequence, a contradiction.

In case U = URL:Label, then this is duplicating the later step l, in which

case we only need the last one of the two appearances, and can drop

the trigger k and have a sequence one shorter with the same resulting

violation, a contradiction.

In case U = URL’:Label, then this is duplicating the immediately fol-

lowing step l1, in which case we also only need the last of the two

appearances, and can thus drop the trigger k to get a sequence that is

one shorter, which has the same resulting violation, a contradiction.

Case 2: l1 < k < l. There are no triggers before l1, but there can be multi-

ple additional trigger rule steps between l1 and l. If there is any new-url(U)

type trigger, we pick the last of them as k. If there are only switch-tab

triggers, we pick the immediate predecessor of l for k.

• Trigger rule step k is new-url(U): Using this trigger rule step does

increase the state space size by adding all the pieces mentioned before

101



in the description of what such a trigger does. Now, if U 6= URL:Label

and U 6= URL’:Label, then all the additions are part of the state, but no

violation occurs here. Whatever k added is just data being carried along

in the state that has no effect on the violation that will be found as it

is for a different URL. Thus, we can shorten the sequence by dropping

this trigger k and will get the same violation at the end, but with a

shorter sequence, a contradiction.

In case U = URL:Label, then this is duplicating the next step l, in

which case we only need the last of the two, and can again drop trigger

k to get a sequence that is one shorter but leads to the same violation,

a contradiction.

In case U = URL’:Label, then this would be duplicating the prior step

l1. But, we had picked l1 to be the last such trigger rule step, so we

have a contradiction and this case is moot.

• Trigger rule k is a switch-tab: This changes the active web app im-

mediately before the step l which creates the violation. Let us first em-

phasize that there are no new-url(U) triggers in the sequence except

for l1. All the triggers between l1 and l are of the switch-tab form,

otherwise we are in the prior case.

If there are multiple such triggers, then in addition to k directly before

l, there is another one, call it m. Now, trigger m and all its changes

will be completely undone by trigger k. So, trigger m is not needed,

and removing trigger m will still yield the exact same violation, a con-

tradiction.

If there is only one such trigger, then we have l1; k; l as the sequence

giving the violation. k can change the active web app but there is only

one (created by l1) and it is already active, so we can drop k and have

a shorter sequence leading to the violation, a contradiction.

Then we consider l to be new-url(URL’:Label), this case works just the

same as the prior case of l being new-url(URL:Label).

So, in each case we have shown that there is a sequence one shorter, which

still violates the property. This is in contradiction to our assumption that we

have picked the sequence with the smallest number of triggers, L. 2

102



With all of these properties verified we know that the SOP holds for the

model of IBOS. The same caveats, as explained earlier in this chapter, of

course do apply. That is, there could be a coding error in the actual imple-

mentation that the model does not capture or the model simply translates

the code imperfectly.

As you see in this section, we always limited the amount of steps we are

running the model for to check our properties of interest. This reduced num-

ber of steps still provides a complete analysis, because all of the properties

we look at are independent of any history. Each of them only requires the

current state. Building all possible canonical current states can be done in

few steps. We have given reduction-based proofs for all of the theorems.

4.4 Related Work

In 2009, Internet Explorer, Chrome, Safari and Firefox had 349 new security

vulnerabilities [77], which get commonly exploited by attackers [125, 96, 103,

77]. This shows the need for work on secure browsers. Some work on a web

browser that uses formal modeling as part of its design has been done before,

for the OP2 [66] browser. For Internet Explorer, the graphical user interface

security has been addressed in [23].

A fully verified microkernel operating system is now available in the

form of seL4 [80], which uses a very similar set of function calls as the

L4Ka::Pistachio microkernel [92]. In the Illinois Browser Operating System

(IBOS) [117] web browser the underlying microkernel is L4Ka due to seL4

not being available at the time. IBOS is based on some of the ideas of OP2

but takes them further.

The same origin policy (SOP) is discussed in [115] and it turns out that

commodity browsers do not do a good job of implementing SOP correctly [24],

due to the fact that the required checks are scattered through their large code

base.

103



CHAPTER 5

FOLDING VARIANT NARROWING AND
OPTIMAL VARIANT TERMINATION

This chapter is based on [57], which is joint work with Santiago Escobar and

José Meseguer. Automated reasoning modulo an equational theory E is a

fundamental technique in many applications. If E can be split as a disjoint

union E∪Ax in such a way that E is confluent, terminating, sort-decreasing,

and coherent modulo a set of equational axioms Ax, narrowing with E mod-

ulo Ax provides a complete E-unification algorithm [78]. However, except

for the hopelessly inefficient case of full narrowing, little seems to be known

about effective narrowing strategies in the general modulo case beyond the

quite depressing observation that basic narrowing is incomplete modulo AC.

Narrowing with equations E modulo axioms Ax can be turned into a prac-

tical automated reasoning technique by systematically exploiting the notion

of E,Ax-variants of a term. After reviewing such a notion, originally pro-

posed by Comon-Lundh and Delaune, and giving various necessary and/or

sufficient conditions for it, we explain how narrowing strategies can be used

to obtain narrowing algorithms modulo axioms that are: (i) variant-complete

(generate a complete set of variants for any input term), (ii) minimal (such

a set does not have redundant variants), and (iii) are optimally variant-

terminating (the strategy will terminate for an input term t iff t has a finite

complete set of variants). We define a strategy called folding variant nar-

rowing that satisfies above properties (i)–(iii); in particular, when E ∪ Ax
has the finite variant property, that is, when any term t has a finite complete

set of variants, this strategy terminates on any input term and provides a

finitary E ∪ Ax-unification algorithm. We also explain how folding variant

narrowing has a number of interesting applications in areas such as unifica-

tion theory, cryptographic protocol verification, and proofs of termination,

confluence and coherence of a set of rewrite rules R modulo an equational

theory E.

Narrowing is a fundamental rewriting technique useful for many purposes,

104



including equational unification and equational theorem proving [74], combi-

nations of functional and logic programming [65, 69, 95], partial evaluation

[4], symbolic reachability analysis of rewrite theories understood as transition

systems [91], and symbolic model checking [51].

Narrowing with confluent and terminating equations E enjoys key com-

pleteness results, including the generation of a complete set of E-unifiers and

the covering of all rewrite sequences starting at an instance of term t by a

normalized substitution (see [74]). However, full narrowing (i.e., narrowing

at all non-variable term positions) can be quite inefficient both in space and

time. Therefore, much work has been devoted to narrowing strategies that,

while remaining complete, can have a much smaller search space. For in-

stance, the basic narrowing strategy [74] was shown to be complete w.r.t. a

complete set of E-unifiers for confluent and terminating equations E.

Termination aspects are another important potential benefit of narrow-

ing strategies, since they can sometimes terminate, generating a finite search

tree when narrowing an input term t, while full narrowing may generate an

infinite search tree on the same input term. For example, works such as

[74, 7] investigate conditions under which basic narrowing, one of the most

fully studied strategies for termination purposes, terminates. Similarly, so-

called lazy narrowing strategies also seek to both reduce the search space and

to increase the chances of termination. However, the extensive literature on

lazy narrowing strategies [105, 10, 55] is mainly focused on efficient evalua-

tion strategies (efficient in the number of narrowing steps or the generality of

computed substitutions to reach a term that cannot be narrowed any more)

whereas we are interested in narrowing strategies that are terminating and

complete for variant generation. The topic of efficient evaluation strategies

is outside the scope of this chapter and can be seen as complementary to

the narrowing strategies for variant generation developed here. See [9, 71]

for references on lazy narrowing strategies. On the other hand, lazy narrow-

ing strategies are demand-driven, and we are not aware of demand-driven

strategies for the modulo case, or even of a notion of needed (or demanded)

evaluation for the modulo case.

By decomposing an equational theory E into a set of rules E and a set of

equational axioms Ax for which a finite and complete Ax-unification algo-

rithm exists, and imposing natural requirements such as confluence, termina-

tion and coherence of the rules E modulo Ax, narrowing can be generalized

105



to narrowing modulo axioms Ax. As known since the original study [78],

the good completeness properties of standard narrowing extend naturally

to similar completeness properties for narrowing modulo Ax. This gener-

alization of narrowing to the modulo case has many applications. It is, to

begin with, a key component of theorem proving systems that often reason

modulo axioms such as associativity-commutativity, and greatly improves

the efficiency of general paramodulation. It is, furthermore, very important

for adding functional-logical features to algebraic functional languages sup-

porting rewriting modulo combinations of equational axioms. Yet another

recent area with many applications is cryptographic protocol analysis, where

there is strong interest in analyzing protocol security modulo the algebraic

theory E of a protocol’s cryptographic functions. That is because protocols

deemed to be secure under the standard Dolev-Yao model, which treats the

underlying cryptography as a black box, can sometimes be broken by clever

use of algebraic properties, e.g., [110].

However, very little is known at present about effective narrowing strate-

gies in the modulo case, and some of the known anomalies ring a cautionary

note, to the effect that the naive extensions of standard narrowing strategies

can fail rather badly in the modulo case. Indeed, except for [78, 123], we

are not aware of any studies about narrowing strategies in the modulo case.

Furthermore, as work in [32, 123] shows, narrowing modulo axioms such

as associativity-commutativity (AC) can very easily lead to non-terminating

behavior and, what is worse, as shown in the Example 1 below, due to Comon-

Lundh and Delaune, basic narrowing modulo AC is not complete.

Example 1 [32] Consider the equational theory (Σ, E ∪Ax) where E con-

tains the following equations and Ax contains associativity1 and commuta-

tivity (AC) for +:

a+ a = 0 (5.1)

b+ b = 0 (5.2)

a+ a+X = X (5.3)

b+ b+X = X (5.4)

0 +X = X (5.5)

The set E is terminating, AC-confluent, and AC-coherent. Consider now the

unification problem X1 +X2
?
= 0 and one of the possible solutions σ = {X1 7→

1We use AC operators many times in the chapter and we often write terms using AC
symbols in its varyadic form, e.g., given an AC symbol +, we write a+a+X or +(a, a,X)
instead of a + (a + X), +(a,+(a,X)), (a + X) + a, or +(+(a,X), a).

106



a + b;X2 7→ a + b}, which is a normalized solution. It is well-known that in

the free case (when Ax = ∅) basic narrowing is complete for unification in

the sense of lifting all innermost rewriting sequences into basic narrowing

sequences (see [94]). That is, given a term t and a (normalized) substitution

σ, every innermost rewriting sequence starting from tσ can be lifted to a basic

narrowing sequence from t computing a substitution more general than σ.

This completeness property fails for basic narrowing modulo AC as shown by

the above example when we consider the term t = X1 +X2 instantiated with σ

and the following innermost rewriting sequence modulo AC from tσ: (a+b)+

(a+ b)→E,AC b+ b→E,AC 0. As further explained in Example 6 below, basic

narrowing modulo AC, i.e., the extension of basic narrowing to AC where

we just replace syntactic unification by AC-unification, cannot lift the above

innermost sequence for tσ into a more general basic narrowing sequence,

because it is necessary to narrow inside the term generated by instantiation.

Therefore, basic narrowing modulo AC is incomplete in the sense of not

providing a complete E∪AC-unification algorithm, even though E may be

confluent, terminating, and coherent modulo AC.

It seems clear that full narrowing, although complete, is hopelessly inef-

ficient in the free case, and even more so modulo a set Ax of axioms. The

above example shows that known efficient strategies like basic narrowing

can totally fail to enjoy the desired completeness properties modulo axioms.

What can be done? For equational theories of the form E∪Ax, where E is

confluent, terminating, and coherent modulo Ax, and such that E∪Ax has

the finite variant property (FV) in the sense of [32], we proposed in [54] a

narrowing strategy that is complete in the sense of generating a complete set

of most general E∪Ax-unifiers, and terminates for any input term computing

its complete set of variants. And in [53] we gave a method that can be used

to check if E∪Ax is FV. However, FV is a quite strong restriction. What can

be done for any confluent, terminating and coherent theory modulo axioms

Ax?

To the best of our knowledge, except for the hopelessly inefficient case

of full narrowing, nothing is known at present about a general narrowing

strategy that is effective and complete in an adequate sense, including being

complete for computing E∪Ax-unifiers, for any theory E∪Ax under the

minimum requirements that E is confluent, terminating, sort-decreasing and

107



coherent modulo Ax, and under minimal requirements on Ax, such as having

a finitary Ax-unification algorithm. It turns out that the general notion of

variant, which makes sense for any such theory E∪Ax and does not depend

on FV, provides the key to obtaining a strategy meeting these requirements,

and sheds considerable light on the very process of computing E∪Ax-unifiers

by narrowing. In [56] we proposed such a general and effective strategy, called

folding variant narrowing, which can be applied to any theory E∪Ax, with E

confluent, terminating, sort-decreasing, and coherent moduloAx, and showed

that it is both complete – both in the sense of computing a complete set of

E∪Ax-unifiers, and of computing a minimal and complete set of variants for

any input term t – and optimally variant-terminating – in the sense that it

will terminate for an input term t if and only if t has a finite, complete set of

variants. To the best of our knowledge, folding variant narrowing is the only

practical, yet complete, general narrowing strategy modulo a set of axioms

Ax; in particular the only such one for the AC case. Furthermore, we showed

in [56] that there is no other such complete strategy that can terminate on an

input term when folding variant narrowing does not. It transforms the, up to

now theoretically possible but practically hopeless, mechanism of narrowing

modulo axioms Ax into a practically usable automated deduction method,

which has already been exploited in a wide range of applications as explained

in Section 5.8.

This chapter extends and unifies within a common theoretical framework

our earlier contributions in [54, 53, 56], and is already published in [57]. Our

goal is to provide the most complete and accessible reference to this general

body of ideas by developing in detail its mathematical foundations and its

fundamental algorithms. The plan of the chapter, and its main contributions,

can be summarized as follows:

1. Comon-Lundh and Delaune’s notion of variant [32] is the fundamental

notion underlying the entire approach. After some preliminaries in Sec-

tion 5.1, in Section 5.2 we further refine this notion by formalizing the

E,Ax-variants of a term t as pairs (t′, θ), with θ a substitution and t′ an

E,Ax-canonical form for tθ, and making explicit the preorder relation

of generalization that holds between such pairs and the corresponding

notion of most general variants in such a preorder.

2. We then give, in Section 5.3, general notions of narrowing strategy

108



and precise definitions of what it means for a strategy to be: (i) vari-

ant complete, i.e., it computes a complete set of variants (and possibly

also minimal, in the sense of the preorder relation of generalization ex-

plained above), and (ii) optimally variant-terminating, i.e., it will ter-

minate iff there is a finite complete set of variants. Note that we are not

interested in efficient narrowing evaluation strategies (as widely studied

in the literature of narrowing) and not even on the standard complete-

ness results for narrowing strategies, so we define variant completeness

and variant termination notions. These are the essential requirements

that will guide us in the search for the desired strategy. To illustrate

how tight these essential requirements are, so that none of the known

strategies satisfy them, we show that basic narrowing, both in the free

case (Ax = ∅) and in the AC case, fails to satisfy properties (i) and/or

(ii).

3. A key contribution is the parametric notion of folding narrowing of

Section 5.4. The essential idea is to associate to any narrowing strat-

egy S a corresponding “folding” version of it. That is, S is a local

strategy, i.e., in the sense of which narrowing steps are allowed from a

term, whereas S	 is a global strategy, i.e., in the sense of tracking vari-

ants and avoiding repeated generation of variants. We prove that for

any complete strategy S, its folding version S	 is always variant com-

plete, which is property (i) in (2) above. The presentation of folding

narrowing in [56] has been improved in this chapter.

4. What about minimality, and about the termination property (ii) in

(2)? Another key contribution is the variant narrowing strategy (V N),

which takes into account properties of confluence, termination and co-

herence of the rules E modulo the axioms Ax to restrict the narrowing

steps from each term. We prove that V N is variant complete. However,

although V N is not variant-terminating, we show that its folding ver-

sion V N	 is variant complete and optimally variant-terminating, thus

variant minimal. The variant narrowing of [54] has been completely

redesigned in this chapter.

5. Although all the above results hold for any theory E ∪ Ax with E

confluent, terminating, sort-decreasing, and coherent modulo Ax, the

109



case when E ∪ Ax has the finite variant property (FV) in the sense of

[32], that is, when any term t has a finite, complete set of variants, is of

particular interest, since then the folding variant narrowing strategy is

guaranteed to terminate and to compute a complete and minimal set of

variants for any input term t. This case is studied in detail in Section

5.5. In particular, we study a number of sufficient and/or necessary

conditions for E ∪ Ax to enjoy FV.

6. A related practical question is: given E∪Ax, how can we check whether

it has the finite variant property? Under appropriate assumptions on

E ∪Ax, we give an algorithm in Section 5.6 that can be used to check

FV. The key idea is to view FV as a generalized termination property.

Our algorithm extends and adapts to the variant generation case ideas

from the dependency pairs method [12], which is a well-known tech-

nique for proving termination of rewriting (modulo axioms). Note that

we do not really extend the dependency pairs technique to narrowing:

we simply reuse the dependency pairs technique to approximate that

there are no infinite variant-preserving narrowing sequences. The same

methods can also be used for disproving FV for a given theory E ∪Ax.

The algorithm of [53] has been improved in this chapter, since we were

computing bounds for the depth of the narrowing tree in [53] that are

not necessary in our improved presentation.

7. Section 5.7 studies in detail one key application of folding variant nar-

rowing, namely, to provide a finitary unification algorithm when E∪Ax
enjoys FV. This is very useful for many applications, for example in

the analysis of cryptographic protocols. Also, in practice, if E ∪ Ax
and E ′ ∪ Ax′ both enjoy FV, their union E ∪ E ′ ∪ Ax ∪ Ax′ is often

FV, either because of disjointness, or because it is quite easy to show it

by checking the required conditions. That is, variant-based unification

is a quite modular approach, although we do not discuss modularity

issues in this chapter.

8. Section 5.8 discusses a number of applications of folding variant nar-

rowing and of variant-based unification, including: (i) cryptographic

protocol verification modulo equational properties; (ii) proof techniques

for termination of rewriting modulo axioms; and (iii) proof techniques

110



for proving confluence and coherence of rewrite rules modulo axioms.

5.1 Preliminaries: R,Ax-rewriting

Since Ax-congruence classes can be infinite, →R/Ax-reducibility is undecid-

able in general. Therefore, R/Ax-rewriting is usually implemented [78] by

R,Ax-rewriting. We assume the following properties on R and Ax:

1. Ax is regular and sort-preserving; furthermore, for each equation t = t′

in Ax, all variables in Var(t) have a top sort.

2. Ax has a finitary and complete unification algorithm.

3. The rewrite rules R are sort-decreasing, confluent, and terminating.

Definition 1 (Rewriting modulo) [124] Let (Σ, Ax,R) be an order-sorted

rewrite theory satisfying properties (1)–(3). We define the relation →R,Ax on

TΣ(X ) by t→p,R,Ax t
′ (or just t→R,Ax t

′) iff there is a non-variable position

p ∈ PosΣ(t), a rule l → r in R, and a substitution σ such that t|p =Ax lσ

and t′ = t[rσ]p.

Note that, since Ax-matching is decidable,→R,Ax is decidable. Notions such

as confluence, termination, irreducible terms, and normalized substitution,

are defined in a straightforward manner for→R,Ax. Note that since R is sort-

decreasing, confluent, and terminating, i.e., the relation →R/Ax is confluent

and terminating, and →R,Ax⊆→R/Ax, the relation →!
R,Ax is decidable, i.e.,

it terminates and produces a unique term (up to Ax-equivalence) for each

initial term t, denoted by t↓R,Ax. Of course t →R,Ax t
′ implies t →R/Ax t

′,

but the converse does not need to hold in general. To prove completeness of

→R,Ax w.r.t. →R/Ax we need the following additional coherence assumption;

we refer the reader to [62, 124, 79] for coherence completion algorithms.

4. →R,Ax is Ax-coherent [78], i.e., ∀t1, t2, t3 we have t1 →R,Ax t2 and t1 =Ax

t3 implies ∃t4, t5 such that t2 →∗R,Ax t4, t3 →+
R,Ax t5, and t4 =Ax t5. See

Figure 5.1 for a graphical illustration.

Let us explain in detail the practical meaning of Ax-coherence, at least for

the common associative-commutative (AC) case. The best way to illustrate

111



t1 R,Ax
//

KS

Ax
��

t2

∗
R,Ax��

t3

+
R,Ax��
t5 t4+3Ax
ks

Figure 5.1: Ax-coherence

it is by its absence. Consider Example 1 where symbol + is declared AC.

Now consider the equation b + b = 0. This equation, if not completed by

another equation, is not coherent modulo AC. What this means is that there

will be term contexts in which the equation should be applied, but it cannot

be applied. Consider, for example, the term b + (a + b). Intuitively, we

should be able to apply to it the above equation to simplify it to the term

a + 0 in one step. However, since we are using the weaker rewrite relation

→E,Ax instead of the stronger but much harder to implement relation→E/Ax,

we cannot! The problem is that the equation cannot be applied (even if we

match modulo AC) to either the top term b+(a+b) or the subterm a+b. We

can however make our equation coherent modulo AC by adding the extra

equation b + b + Y = 0 + Y , which, using also the equation X + 0 = X,

we can slightly simplify to the equation b + b + Y = Y . This extended

version of our equation will now apply to the term b + (a + b), giving the

simplification b+(a+b) −→E,Ax a. Technically, what coherence means is that

the weaker relation →E,Ax becomes semantically equivalent to the stronger

relation →E/Ax.

Coherence can be handled implicitly or explicitly, i.e., either the match-

ing mechanism is modified to take care of this issue or the rules are explicitly

extended, which is the option shown above; see [122] for a comparison be-

tween implicit and explicit extensions. For rewriting, implicit extensions are

sufficient in many cases, as the implicit Ax-coherence completion provided

by the Maude tool [29] for any combination of associativity (A), commu-

tativity (C), and identity (U) axioms. For narrowing, implicit extension is

more complicated and it is sufficient in common cases such as combinations

of C, AC, and ACU axioms to consider explicit single-variable extensions,

i.e., given an equation s = t one considers s + x = t + x where x is a new

112



variable. The method is as follows for AC. For any symbol f which is AC,

and for any equation of the form f(u, v) = w in E, we add also the equation

f(f(u, v), X) = f(w,X), where X is a new variable not appearing in u, v, w.

In an order-sorted setting, we should give to X the biggest sort possible, so

that it will apply in all generality. As an additional optimization, note that

some equations may already be coherent modulo AC, so that we need not

add the extra equation. For example, if the variable X has the biggest possi-

ble sort it could have, then the equation X + 0 = X of Example 1 is already

coherent, since X will match “the rest of the +-expression,” regardless of

how big or complex that expression might be, and of where in the expression

a constant 0 occurs.

The following theorem in [78, Proposition 1] that generalizes ideas in [102]

and has an easy extension to order-sorted theories, links→R/Ax with→R,Ax.

Theorem 8 (Correspondence) [102, 78] Let (Σ, Ax,R) be an order-sorted

rewrite theory satisfying properties (1)–(4). Then t1 →!
R/Ax t2 iff t1 →!

R,Ax t3,

where t2 =Ax t3.

Finally, we provide the notion of decomposition of an equational theory into

rules and axioms.

Definition 2 (Decomposition) [54] Let (Σ, E) be an order-sorted equa-

tional theory. We call (Σ, Ax,E) a decomposition of (Σ, E) if E = E ∪ Ax
and (Σ, Ax,E) is an order-sorted rewrite theory satisfying properties (1)–(4)

above.

Note that we abuse notation and call (Σ, Ax,E) a decomposition of an order-

sorted equational theory (Σ, E) even if E 6= E ∪ Ax but E is the explicitly

extended Ax-coherent version of a set E ′ such that E = E ′ ∪ Ax.

5.2 Variants

Given an equational theory E , the E-variants of a term t are pairs (t′, θ) such

that tθ =E t
′. This notion can be very useful for reasoning about t modulo

E , e.g., unification modulo E of two terms t and t′ can be understood as

an appropriate intersection of sets of E-variants for t and t′ (as shown in

Section 5.7).

113



Definition 3 (Variants) [32] Given a term t and an order-sorted equa-

tional theory (Σ, E), we say that (t′, θ) is an E-variant of t if tθ =E t
′, where

Dom(θ) ⊆ Var(t) and Ran(θ) ∩ Var(t) = ∅.

Example 2 Let us consider the following equational theory for both the

exclusive-or operator and the cancellation equations for public encryption and

decryption. The exclusive-or symbol is ⊕ and the symbols pk and sk are used

for public and private key encryption, respectively. This equational theory is

useful for protocol verification (see [91]) and it is relevant here because there

are no unification procedures available in the literature which are directly ap-

plicable to it, e.g., unification algorithms for exclusive-or such as [8] do not

directly apply when extra equations are added.

X ⊕ Y = Y ⊕X

X ⊕ (Y ⊕ Z) = (X ⊕ Y )⊕ Z

X ⊕ 0 = X

X ⊕X = 0

pk(K, sk(K,M)) = M

sk(K, pk(K,M)) = M

Given the term M ⊕ M , we have that: (i) (0, id),

(ii) (0, {M 7→ pk(K, sk(K,M ′))}), and (iii) (0, {M 7→ M ′ ⊕ M ′ ⊕ M ′′})
are some of its variants. Given the term X⊕Y , we have that: (i) (X⊕Y, id),

(ii) (0, {X 7→ U, Y 7→ U}), (iii) (Z, {X 7→ 0, Y 7→ Z}), and

(iv) (Z, {X 7→ Z, Y 7→ 0}) are some of its variants.

Suppose that a rewrite theory (Σ, Ax,E) is a decomposition of (Σ, E).

Given a term t, we can obtain a tighter notion of variant of t (also called an

E,Ax-variant of t) as a pair (t′, θ) with t′ an E,Ax-canonical form of the term

tθ. That is, the variants of a term now give us all the irreducible patterns

that instances of t can reduce to.

Definition 4 (Complete set of variants) [32] Let (Σ, Ax,E) be a decom-

position of an order-sorted equational theory (Σ, E). A complete set of E,Ax-

variants (up to renaming) of a term t is a subset V of E-variants of t such

that, for each substitution σ, there is a variant (t′, θ) ∈ V and a substitu-

tion ρ such that: (i) t′ is E,Ax-irreducible, (ii) (tσ)↓E,Ax =Ax t
′ρ, and (iii)

(σ↓E,Ax)|Var(t) =Ax (θρ)|Var(t).

114



Example 3 The equational theory (Σ, E) of Example 2 has a decomposition

into E consisting of the oriented equations below, and Ax the associativity

and commutativity (AC) axioms for ⊕:

X ⊕ 0 = X (5.6)

X ⊕X = 0 (5.7)

X ⊕X ⊕ Y = Y (5.8)

pk(K, sk(K,M)) = M (5.9)

sk(K, pk(K,M)) = M (5.10)

Note that equations (5.6)–(5.7) are not AC-coherent, but adding equation

(5.8) is sufficient to recover that property (see [124, 43]). For term t =

M⊕M , the set {(0, id)} provides a complete set of E,Ax-variants, since any

possible variant of t is an instance of (0, id).

The following characterization of variants in terms of a variant semantics

for decompositions is useful in various applications discussed later in the

chapter.

Definition 5 (Variant Semantics) Let (Σ, Ax,E) be a decomposition of

an equational theory (Σ, E) and t be a Σ-term. We define the set of (normal-

ized) E,Ax-variants of t as

[[t]]?E,Ax = {(t′, θ) | θ ∈ Subst(Σ,X ), tθ →!
E,Ax t

′′, and t′′ =Ax t
′}.

Of course, some variants are more general than others, that is, there

is a natural preorder (t′, θ′) vE,Ax (t′′, θ′′) defining when variant (t′′, θ′′) is

more general than variant (t′, θ′). This is important, because even though

the set of E,Ax-variants of a term t may be infinite, the set of most general

variants (that is maximal elements in the generalization preorder up to Ax-

equivalence and variable renaming) may be finite. Our notion of being more

general takes into account not only the instantiation relation between the

two substitutions θ1 and θ2 and the two normal forms t1 and t2 of a term t,

but also whether θ2 is already an E,Ax-normalized substitution, since, for a

substitution θ, the less E,Ax rewrite steps, the better.

Definition 6 (Variant Preordering) Let (Σ, Ax,E) be a decomposition

of an equational theory (Σ, E) and t be a Σ-term. Given two variants (t1, θ1),

(t2, θ2) ∈ [[t]]?E,Ax, we write (t1, θ1) vE,Ax (t2, θ2), meaning (t2, θ2) is more

115



general than (t1, θ1), iff there is a substitution ρ such that t1 =Ax t2ρ and

(θ1↓E,Ax)|Var(t) =Ax (θ2ρ)|Var(t). We write (t1, θ1) <E,Ax (t2, θ2) iff

(t1, θ1) vE,Ax (t2, θ2) and for every substitution ρ such that t1 =Ax t2ρ and

(θ1↓E,Ax)|Var(t) =Ax (θ2ρ)|Var(t), ρ is not a renaming.

We are, indeed, interested in equivalence classes for variant semantics to

provide a notion of semantic equality, written 'E,Ax, based on vE,Ax.

Definition 7 (Variant Equality) Let (Σ, Ax,E) be a decomposition of an

equational theory (Σ, E) and t be a Σ-term. For S1, S2 ⊆ [[t]]?E,Ax, we write

S1 vE,Ax S2 iff for each (t1, θ1) ∈ S1, there exists (t2, θ2) ∈ S2 s.t.

(t1, θ1) vE,Ax (t2, θ2). We write S1 'E,Ax S2 iff S1 vE,Ax S2 and S2 vE,Ax S1.

Despite the previous semantic notion of equivalence, we write (t1, θ1) =Ax

(t2, θ2) to denote that t1 =Ax t2 and θ1 =Ax θ2, and we provide a notion of

equality of variants up to renaming. Both relations =Ax and ≈Ax will be

useful.

Definition 8 (Ax-Equality) Let (Σ, Ax,E) be a decomposition of an equa-

tional theory (Σ, E) and t be a Σ-term. For (t1, θ1), (t2, θ2) ∈ [[t]]?E,Ax, we

write (t1, θ1) ≈Ax (t2, θ2) if there is a renaming ρ such that t1ρ =Ax t2ρ and

(θ1ρ)|Var(t) =Ax (θ2ρ)|Var(t). For S1, S2 ⊆ [[t]]?E,Ax, we write S1 ≈Ax S2 if for

each (t1, θ1) ∈ S1, there exists (t2, θ2) ∈ S2 s.t. (t1, θ1) ≈Ax (t2, θ2), and for

each (t2, θ2) ∈ S2, there exists (t1, θ1) ∈ S1 s.t. (t2, θ2) ≈Ax (t1, θ1).

The preorder of Definition 6 allows us to define a most general and com-

plete set of variants that encompasses (modulo Ax and modulo renaming)

all the variants for a term t.

Definition 9 (Most General and Complete Variant Semantics) Let

(Σ, Ax,E) be a decomposition of an equational theory (Σ, E) and t be a Σ-

term. A most general and complete variant semantics of t, denoted [[t]]E,Ax,

is a subset [[t]]E,Ax ⊆ [[t]]?E,Ax such that: (i) [[t]]?E,Ax vE,Ax [[t]]E,Ax, and (ii) for

each (t1, θ1) ∈ [[t]]E,Ax, there is no (t2, θ2) ∈ [[t]]E,Ax \ {(t1, θ1)} s.t.

(t1, θ1) vE,Ax (t2, θ2).

For any term t, [[t]]E,Ax characterizes the set of maximal elements of the

preorder ([[t]]?E,Ax,vE,Ax). The set [[t]]E,Ax is unique up to ≈Ax-equivalence.

By definition, [[t]]E,Ax ⊂ [[t]]?E,Ax and all the substitutions in [[t]]E,Ax are E,Ax-

normalized.

116



Example 4 In the equational theory of Example 3, for terms t = M ⊕
sk(K, pk(K,M)) and s = X ⊕ sk(K, pk(K,Y )), we have that [[t]]E,Ax =

{(0, id)} and

[[s]]E,Ax = { (X ⊕ Y, id), (0, {X 7→ U, Y 7→ U}),
(Z, {X 7→ U, Y 7→ Z ⊕ U}), (Z, {X 7→ 0, Y 7→ Z}),
(Z, {X 7→ Z ⊕ U, Y 7→ U}), (Z, {X 7→ Z, Y 7→ 0}),
(Z1 ⊕ Z2,

{X 7→ U ⊕ Z1, Y 7→ U ⊕ Z2})}

These two sets are the most general ones w.r.t. vE,Ax.

In the next section, we study how to compute the variants of a term.

5.3 Narrowing Strategies and Optimal Variant

Termination

In this section, we introduce narrowing, narrowing strategies and their use

for variant generation. As already mentioned, we are not interested in opti-

mal evaluation narrowing strategies [9, 71], which is an extensive topic in the

literature on functional logic programming, and not even on the standard

completeness results for narrowing strategies. We are interested in narrow-

ing strategies that are terminating and complete for computing variants. A

comparison of the folding variant narrowing strategy, defined in this chap-

ter, with the related literature on optimal evaluation narrowing strategies is

outside the scope of this chapter.

Narrowing generalizes rewriting by performing unification at non-variable

positions instead of the usual matching. The essential idea behind narrow-

ing is to symbolically represent the rewriting relation between terms as a

narrowing relation between more general terms with variables.

Definition 10 (Narrowing modulo) [78, 91] Let R = (Σ, Ax,R) be an

order-sorted rewrite theory. Let CSUAx(u = u′) be a finite and complete set

of Ax-unifiers for any pair of terms u, u′ with the same top sort. Let t be

a Σ-term and W be a set of variables such that Var(t) ⊆ W . The R,Ax-

narrowing relation on TΣ(X ) is defined as t p,σ,R,Ax t
′ ( σ,R,Ax if p is un-

derstood,  σ if R,Ax are also understood, and  if σ is also understood)

117



if there is a non-variable position p ∈ PosΣ(t), a rule l → r ∈ R prop-

erly renamed s.t. Var(l) ∩ W = ∅, and a unifier σ ∈ CSUW ′

Ax(t|p = l) for

W ′ = W ∪ Var(l), such that t′ = (t[r]p)σ.

For convenience, in each narrowing step t σ t
′ we only specify the part of

σ that binds variables of t. The transitive (resp. transitive and reflexive)

closure of  is denoted by  + (resp.  ∗). We may write t k
σ t
′ if there

are u1, . . . , uk−1 and substitutions ρ1, . . . , ρk such that t ρ1 u1 · · ·uk−1 ρk t
′,

k ≥ 0, and σ = ρ1 · · · ρk.

Example 5 Consider Example 3. Given the term t = X ⊕ Y , there are

several narrowing steps that can be performed

X ⊕ Y  φ1,E,Ax Z using φ1 = {X 7→ 0, Y 7→ Z} and Equation (5.6)

X ⊕ Y  φ2,E,Ax Z using φ2 = {X 7→ Z, Y 7→ 0} and Equation (5.6)

X ⊕ Y  φ3,E,Ax Z using φ3 = {X 7→ Z ⊕ U, Y 7→ U}
and Equation (5.8)

X ⊕ Y  φ4,E,Ax Z using φ4 = {X 7→ U, Y 7→ Z ⊕ U}
and Equation (5.8)

X ⊕ Y  φ5,E,Ax 0 using φ5 = {X 7→ U, Y 7→ U} and Equation (5.7)

X ⊕ Y  φ6,E,Ax Z1 ⊕ Z2 using φ6 = {X 7→ U ⊕ Z1, Y 7→ U ⊕ Z2}
and Equation (5.8)

And some redundant narrowing steps with non-normalized substitutions due

to the prolific AC-unification such as

X ⊕ Y  φ7,E,Ax Z1 ⊕ Z2 using φ7 = {X 7→ Z1 ⊕ 0, Y 7→ Z2}
and Equation (5.6)

X ⊕ Y  φ8,E,Ax Z1 ⊕ Z2 using φ8 = {X 7→ Z1, Y 7→ 0⊕ Z2}
and Equation (5.6)

X ⊕ Y  φ9,E,Ax Z using φ9 = {X 7→ U ⊕ U, Y 7→ Z}
and Equation (5.8)

X ⊕ Y  φ10,E,Ax Z using φ10 = {X 7→ Z, Y 7→ U ⊕ U}
and Equation (5.8)

118



X ⊕ Y  φ11,E,Ax Z1 ⊕ Z2 using φ11 = {X 7→ U ⊕ U ⊕ Z1, Y 7→ Z2}
and Equation (5.8)

X ⊕ Y  φ12,E,Ax Z1 ⊕ Z2 using φ12 = {X 7→ Z1, Y 7→ U ⊕ U ⊕ Z2}
and Equation (5.8)

Indeed, the narrowing search command of Maude [30] computes 124 different

narrowing steps from term t. When we consider narrowing sequences instead

of single steps, we can easily get a combinatorial explosion, since after any

of the narrowing steps: X ⊕ Y  φ6,E,Ax Z1⊕Z2, X ⊕ Y  φ8,E,Ax Z1⊕Z2, or

X⊕Y  φ11,E,Ax Z1⊕Z2, we have another 124 different narrowing steps. Also,

there are clearly many infinite narrowing sequences, such as the one repeat-

ing substitution φ6 again and again: X ⊕ Y  φ6,E,Ax Z1 ⊕ Z2 φ′6,E,Ax
Z ′1 ⊕

Z ′2 φ′′6 ,E,Ax
Z ′′1⊕Z ′′2  E,Ax · · · where φ′6 = {Z1 7→ U ′⊕Z ′1, Z2 7→ U ′⊕Z ′2} and

φ′′6 = {Z ′1 7→ U ′′ ⊕ Z ′′1 , Z ′2 7→ U ′′ ⊕ Z ′′2}. Clearly, strategies that dramatically

reduce this search space, yet are complete, are surely needed.

5.3.1 Completeness of Narrowing w.r.t. Rewriting

Several notions of completeness of narrowing w.r.t. rewriting have been given

in the literature (e.g., [74, 78, 91]).

Theorem 9 (Completeness of Full Narrowing Modulo) [78] Let

(Σ, Ax,E) be a decomposition of an equational theory (Σ, E). Let t1 be a

Σ-term and σ be an E,Ax-normalized substitution. If t1σ →E,Ax t2 →E,Ax

· · · →E,Ax tn such that tn = (t1σ)↓E,Ax, then there exist terms t′2, . . . , t
′
n and

E,Ax-normalized substitutions θ1, . . . , θn and ρ s.t. t1 θ1,E,Ax t
′
2 θ2,E,Ax · · ·

 θn,E,Ax t
′
n, σ|Var(t1) =Ax (θ1 · · · θnρ)|Var(t1), and ti =Ax t

′
iρ for 1 ≤ i ≤ n.

We can easily extend the previous result to allow non-normalized substitu-

tions.

Lemma 8 (Completeness) Let (Σ, Ax,E) be a decomposition of an equa-

tional theory (Σ, E). Let t1 be a Σ-term and θ be any substitution. If

t1θ →!
E,Ax t2, then there exists a term t′2 and two E,Ax-normalized sub-

stitutions σ and ρ s.t. t1 ∗σ,E,Ax t
′
2, (θ↓E,Ax)|Var(t1) =Ax (σρ)|Var(t1), and

t2 =Ax t
′
2ρ.

119



Proof. Let θ̄ = θ↓E,Ax. By coherence, confluence and termination of →E,Ax,

t1θ →!
E,Ax t2 implies ∃t3 : t1θ̄ →!

E,Ax t3 and t3 =Ax t2. By Theorem 9,

there exists a term t′3 and two E,Ax-normalized substitutions σ and ρ s.t.

t1 ∗σ,R,E t
′
3, θ̄|Var(t1) =Ax (σρ)|Var(t1), and t3 =Ax t

′
3ρ. 2

As a direct consequence of Lemma 8 we obtain the following result.

Corollary 1 (Complete Variant Semantics by Full Narrowing) Let

(Σ, Ax,E) be a decomposition of an equational theory (Σ, E). Then for each

term t, the set

[[t]]FullE,Ax = {(t′, θ) | t ∗θ,E,Ax t′ ∧ t′ = t′↓E,Ax}

is a complete set of variants, i.e., [[t]]?E,Ax vE,Ax [[t]]FullE,Ax.

Note that, although [[t]]?E,Ax vE,Ax [[t]]FullE,Ax, not all (t′, θ) ∈ [[t]]FullE,Ax need to

be most general, i.e., [[t]]FullE,Ax is not necessarily a most general complete set of

variants as shown by Example 5. Therefore, full narrowing gives us a way of

computing a complete variant semantics, [[t]]FullE,Ax, from which we would like

to obtain a subset S ⊆ [[t]]FullE,Ax such that S is a most general and complete

variant semantics, i.e., S = [[t]]E,Ax. The key question, then, is:

Can we compute the set [[t]]E,Ax of most general E-variants of a

term t effectively?

This is not entirely obvious. Full (i.e., unrestricted) E,Ax-narrowing may

never terminate and the set [[t]]FullE,Ax can easily be infinite, even though a fi-

nite set of most general elements for it exists. The solution, of course, is that

we should look for adequate narrowing strategies that have better proper-

ties than full E,Ax-narrowing so that if [[t]]E,Ax is finite, then the narrowing

strategy will terminate and will compute [[t]]E,Ax.

5.3.2 Narrowing Strategies and Their Properties

In order to obtain an appropriate narrowing strategy that enjoys better prop-

erties than full E,Ax-narrowing and allows to compute [[t]]E,Ax, we need to

characterize what a narrowing strategy is and which properties it must sat-

isfy. E.g., the notion of variant-completeness rather than the standard full

narrowing completeness becomes essential.

120



First, we define the notion of a narrowing strategy and several useful prop-

erties. Given a narrowing sequence α : (t0 p0,σ0,R,Ax t1 · · · pn−1,σn−1,R,Ax tn),

we denote by αi the narrowing sequence αi : (t0 p0,σ0,R,Ax t1 · · ·
 pi−1,σi−1,R,Ax ti) which is a prefix of α. Given an order-sorted rewrite theory

R, we denote by FullR(t) the (possibly infinite) set of all narrowing sequences

starting at term t.

Definition 11 (Narrowing Strategy) A narrowing strategy S is a func-

tion of two arguments, namely, a rewrite theory R = (Σ, Ax,R) and a term

t ∈ TΣ(X ), which we denote by SR(t), such that SR(t) ⊆ FullR(t). We re-

quire SR(t) to be prefix closed, i.e., for each narrowing sequence α ∈ SR(t)

of length n, and each i ∈ {1, . . . , n}, we also have αi ∈ SR(t).

Note that this definition of a narrowing strategy is very general and does

not consider any aspect about efficient narrowing strategies at all, see [9] for

efficient narrowing strategies.

Each narrowing strategy is trivially sound w.r.t. rewriting. We say that

a narrowing strategy S is complete w.r.t. rewriting if it satisfies Theorem 9

above, concretized as follows.

Definition 12 (Completeness of a Narrowing Strategy) Let R =

(Σ, Ax,E) be a decomposition of an equational theory (Σ, E). A narrowing

strategy SR is called complete iff for each pair of terms t1 and t2 and each

E,Ax-normalized substitution θ such that t1θ →!
E,Ax t2, there exists a term t′2

and two E,Ax-normalized substitutions σ and ρ s.t. (t1 ∗σ,E,Ax t
′
2) ∈ SR(t),

θ|Var(t1) =Ax (σρ)|Var(t1), and t2 =Ax t
′
2ρ.

In this chapter we are interested in a notion of completeness of a narrow-

ing strategy slightly different than previous notions, which we call variant-

completeness. First, we extend the variant semantics to narrowing strategies

and consider only narrowing sequences to normalized terms.

Definition 13 (Narrowing Variant Semantics) Let R = (Σ, Ax,E) be

a decomposition of an equational theory (Σ, E) and SR be a narrowing strat-

egy. We define the set of narrowing variants of a term t w.r.t. SR as

[[t]]SRE,Ax = {(t′, θ) | (t ∗θ,E,Ax t′) ∈ SR(t) and t′ = t′↓E,Ax}.

Now, we can define our notion of variant-completeness.

121



Definition 14 (Variant Completeness and Minimality) Let

R = (Σ, Ax,E) be a decomposition of an equational theory (Σ, E). A narrow-

ing strategy SR is called E,Ax-variant-complete (or just variant-complete) iff

for any Σ-term t we have that [[t]]E,Ax 'E,Ax [[t]]SRE,Ax. The narrowing strategy

SR is called E,Ax-variant-minimal (or just variant-minimal) iff, in addi-

tion, for any Σ-term t we have that [[t]]E,Ax ≈Ax [[t]]SRE,Ax and for each pair of

variants (t1, θ1), (t2, θ2) ∈ [[t]]SRE,Ax such that (t1, θ1) 6=Ax (t2, θ2), we have that

(t1, θ1) 6≈Ax (t2, θ2).

In practice, the set SR(t) of narrowing sequences from a term t will be

generated by an algorithm ASR . That is, ASR is a computable function

such that, given a pair (R, t), it enumerates the set SR(t). Even when R =

(Σ, Ax,E) is a decomposition of an equational theory, the strategy SR is

variant-complete, and [[t]]E,Ax is finite on an input term t, it may happen that

[[t]]SRE,Ax is not finite. Furthermore, even if [[t]]SRE,Ax is finite, its enumeration

using the algorithm ASR may not terminate. We are of course interested in

variant-complete narrowing strategies that will always terminate on an input

term t whenever [[t]]E,Ax is finite. This leads to the following notion of variant

termination for an algorithm AS , further restricting the class of algorithms

we are interested in.

Definition 15 (Optimal Variant Termination) Let R = (Σ, Ax,E) be

a decomposition of an equational theory (Σ, E) and SR be an E,Ax-variant-

complete narrowing strategy. An algorithm ASR for computing SR is variant-

terminating iff ASR(t) terminates on input (R, t) iff [[t]]SRE,Ax is finite. An algo-

rithm ASR is optimally variant-terminating iff both ASR is variant-termina-

ting and [[t]]SRE,Ax is variant-minimal for every Σ-term t.

By abuse of language, we say that a narrowing strategy S is variant-termina-

ting (resp. optimally variant-terminating) whenever AS is. The term “opti-

mally variant-terminating” is justified as follows.

Proposition 1 Let R = (Σ, Ax,E) be a decomposition of an equational

theory (Σ, E). Let SR be an E,Ax-variant-complete narrowing strategy and

S ′R be an optimally variant-terminating narrowing strategy. Then, for each

Σ-term t such that SR(t) terminates, then S ′R(t) also terminates.

122



Proof. If SR(t) terminates, then [[t]]SRE,Ax is necessarily finite. Therefore,

[[t]]
S′R
E,Ax is also necessarily finite, since S ′R is variant-minimal. Therefore,

S ′R(t) also terminates. 2

Therefore, if a variant-complete narrowing strategy SR is optimally

variant-terminating, then whenever any other narrowing strategy S ′R enjoy-

ing the same variant-completeness property terminates on a term t, SR is

guaranteed to terminate on t as well. Such an optimally variant-terminating

strategy would be a powerful tool, improving over many narrowing strate-

gies defined previously in the literature, as shown in the next section. Later,

in Sections 5.4 and 5.5 below, we introduce a narrowing strategy that is

optimally variant-terminating under some conditions.

5.3.3 Basic Narrowing (Modulo) is neither Variant-Complete
nor Optimally Variant-Terminating

In this section we show that basic narrowing modulo AC is not variant-

complete. Furthermore, we show that even basic narrowing without axioms

is not optimally variant-terminating, thus showing that there is room for

improvement even in the free case. We extend the standard definition of

basic narrowing given in [73] to the modulo case.

Definition 16 (Basic Narrowing modulo Ax) Let (Σ, Ax,R) be an

order-sorted rewrite theory. Given a term t ∈ TΣ(X ), a substitution ρ, and

a set W of variables such that Var(t) ⊆ W and Var(ρ) ⊆ W , a basic nar-

rowing step modulo Ax for 〈t, ρ〉 is defined by 〈t, ρ〉 b
 p,θ,R,Ax 〈t′, ρ′〉 iff there

is p ∈ PosΣ(t), a rule l→ r ∈ R properly renamed s.t. Var(l) ∩W = ∅, and

θ ∈ CSUW ′

Ax(t|pρ = l) for W ′ = W ∪ Var(l) such that t′ = t[r]p, and ρ′ = ρθ.

Basic narrowing modulo AC is incomplete w.r.t. innermost rewriting

modulo AC [123] despite its completeness in the free case [94], i.e., there

are innermost rewriting sequences modulo AC that are not lifted to basic

narrowing sequences modulo Ax. In particular, basic narrowing modulo AC

is not variant-complete.

123



Example 6 The following full narrowing sequence relevant for the unifica-

tion problem X1 +X2
?
= 0 of Example 1:

X1 +X2 ρ1,E,AxX
′ +X ′′

using ρ1 = {X1 7→ a+X ′, X2 7→ a+X ′′} and rule (5.3)

X ′ +X ′′ ρ2,E,Ax 0

using ρ2 = {X ′ 7→ b,X ′′ 7→ b} and rule (5.2)

is not a basic narrowing sequence modulo AC, since after the first step it

results in a variable X and no further basic narrowing step modulo AC is

possible:

〈X1 +X2, id〉
b
 τ1,E,Ax

〈X, τ1〉
using τ1 = {X1 7→ a+X ′, X2 7→ a+X ′′, X 7→ X ′ +X ′′} and rule (5.3)

Since the pair (0, ρ1ρ2) is a variant of X1 + X2 not subsumed by any basic

narrowing sequence generated from X1 +X2, basic narrowing modulo AC is

not variant-complete.

Moreover, basic narrowing in the free case is actually not optimally

variant-terminating, as shown by the following example.

Example 7 Consider the rewrite theory R = (Σ, ∅, E) where E is the set

of confluent and terminating rules E = {f(x) → x, f(f(x)) → f(x)} and

Σ contains only the unary symbol f and a constant a. The term t = f(x)

has only one variant: [[f(x)]]E,Ax = {(x, id)}. Indeed, the theory has the

finite variant property (see Example 15 in Section 5.5, or also [53]). Basic

narrowing performs the following two narrowing steps:

(i) 〈f(x), id〉 b
 {x 7→x′},E 〈x′, {x 7→ x′}〉 and

(ii) 〈f(x), id〉 b
 {x 7→f(x′)},E 〈f(x′), {x 7→ f(x′)}〉.

However, the second narrowing step leads to the following non-terminating

basic narrowing sequence:

〈f(x), id〉 b
 {x 7→f(x′)},E 〈f(x′), {x 7→ f(x′)}〉
b
 {x′ 7→f(x′′)},E 〈f(x′′), {x 7→ f(f(x′′)), x′ 7→ f(x′′)}〉
· · ·

124



and basic narrowing is unable to terminate and provide the finite number of

variants associated to the term t.

In the next section we define a variant-complete narrowing strategy.

5.4 Folding Variant Narrowing

In order to compute the variants of a term, we can simply keep track of all

the variants generated so far by narrowing, since we know that for any de-

composition there is a (possibly infinite) set of most general variants (modulo

axioms and modulo renaming) and sooner or later full narrowing will gener-

ate those most general variants, thanks to Corollary 1. In this section, we

define a narrowing strategy called folding narrowing, which works in this way

and achieves variant-completeness. Note that the folding narrowing strategy

is parametric on another complete narrowing strategy, which will allow us

later to define more concise narrowing strategies for obtaining the variants.

Also note that only when a term has a finite number of most general variants,

a narrowing strategy can be optimally variant-terminating for that term; this

is studied in detail in Section 5.5 below.

First, we need to introduce the notion of variant preordering with nor-

malization, which is very close to Definition 6, in order to capture when a

newly generated variant is subsumed by a previously generated one.

Definition 17 (Normalized Variant Preordering) Let (Σ, Ax,E) be a

decomposition of an equational theory (Σ, E) and t be a Σ-term. Given two

variants (t1, θ1), (t2, θ2) ∈ [[t]]?E,Ax, we write (t1, θ1) v!
E,Ax (t2, θ2), meaning

(t2, θ2) is a more general variant of t than (t1, θ1), iff

(t1↓E,Ax, θ1) vE,Ax (t2, θ2).

We define in Definition 18 below the folding narrowing strategy, which is

based on the different levels of reachable states, denoted as Frontierv!
E,Ax

(I)i,

and the relation v!
E,Ax for identifying variants subsumed by previously gen-

erated ones. We are presenting a specialized version of the folding reachable

transition system of [51] rolled together with our folding narrowing strategy.

Given a decomposition R = (Σ, Ax,E) of an equational theory (Σ, E) and

a narrowing strategy SR, we extend SR to variants as follows: given a term

125



t and a substitution ρ, SR((t, ρ)) = {(t, ρ) ∗σ,E,Ax(t
′, ρσ) | (t ∗σ,E,Ax t

′) ∈
SR(t)}.

Definition 18 (Folding Narrowing Strategy) Let R = (Σ, Ax,E) be a

decomposition of an equational theory (Σ, E) and SR a narrowing strategy.

Let t be a Σ-term. The frontier from I = (t, id) with folding v!
E,Ax is defined

as

Frontierv!
E,Ax

(I)0 = I,

Frontierv!
E,Ax

(I)n+1 =

{(y, ρσ) | (∃(z, ρ) ∈ Frontierv!
E,Ax

(I)n : (z, ρ) σ,E,Ax(y, ρσ))∧
(@k ≤ n, (w, τ) ∈ Frontierv!

E,Ax
(I)k : (y, ρσ) v!

E,Ax (w, τ))}

The folding SR-narrowing strategy, denoted by S	R(t), is defined as

S	R(t) = {t k
σ,E,Ax t

′ | ((t, id) k
σ,E,Ax(t

′, σ)) ∈ SR(t)∧
(t′, σ) ∈ Frontierv!

E,Ax
(I)k}

We write Full	R to denote the folding version of the full narrowing strategy

FullR. The following example shows the advantages of folding full narrowing

for computing variants, for instance w.r.t. basic narrowing modulo AC.

Example 8 Considering Example 7. Using the Full	R strategy, we only get

step (i), since step (ii) is subsumed by step (i). That is, (f(x′), {x 7→
f(x′)}) v!

E,∅ (x′, {x 7→ x′}), since f(x′)↓E,Ax = x′. So even though basic

narrowing does not terminate for this equational theory, Full	R does.

The following example shows what steps are performed by Full	R and its

termination on our running example.

Example 9 Using the theory from Example 3, for t = X ⊕ Y we get the

following Full	R steps. First, we show the narrowing steps with normalized

substitutions.

(i) (X ⊕ Y, id) φ1(Z, φ1), using Equation (5.6) and substitution φ1 =

{X 7→ 0, Y 7→ Z},

(ii) (X ⊕ Y, id) φ2(Z, φ2), using Equation (5.6) and substitution φ2 =

{X 7→ Z, Y 7→ 0},

126



(iii) (X ⊕ Y, id) φ3(Z, φ3), using Equation (5.8) and substitution φ3 =

{X 7→ Z ⊕ U, Y 7→ U},

(iv) (X ⊕ Y, id) φ4(Z, φ4), using Equation (5.8) and substitution φ4 =

{X 7→ U, Y 7→ Z ⊕ U},

(v) (X ⊕ Y, id) φ5(0, φ5), using Equation (5.7) and substitution φ5 =

{X 7→ U, Y 7→ U},

(vi) (X ⊕ Y, id) φ6(Z1 ⊕ Z2, φ6), using Equation (5.8) and φ6 = {X 7→
U ⊕ Z1, Y 7→ U ⊕ Z2}.

Non-normalized narrowing steps such as

(X ⊕ Y, id) φ6(Z, φ7), using Equation (5.8) and φ7 = {X 7→
U ⊕ U, Y 7→ Z}

are also computed by Full	R but all are finally subsumed by a variant with the

normalized version of the same substitution, e.g., (Z, φ7) vE,Ax (Z, φ1). Note

that Full	R terminates after generating all narrowing steps above:

1. There are no further steps possible from (i)-(iv), since any instantia-

tion of Z for which a narrowing step is possible would mean that the

computed substitution is not normalized.

2. There is no further step possible from (v), since 0 is a normal form.

3. There are no further steps possible from (vi), since we are back at the

beginning, i.e, (Z1 ⊕ Z2, φ6) v!
E,Ax (t, id), and can repeat all of the steps

possible from (t, id), but all of the results are subsumed by the same step

we already have from (t, id).

Note that by the use of the folding definition we get only the shortest

paths to each possible term (depending on the substitution), since longer

paths are simply subsumed by shorter ones using vE,Ax.
Any folding narrowing strategy is sound as it is a further restriction of

the narrowing strategy. We prove that any folding narrowing strategy S	 is

variant-complete provided the given narrowing strategy S that is restricted

by folding is complete according to Definition 12. First, we provide two

auxiliary definitions and an auxiliary result.

127



Definition 19 Given a decomposition (Σ, Ax,E), a term t, and two narrow-

ing sequences α1 : t ∗σ1,E,Ax
t1 and α2 : t ∗σ2,E,Ax

t2, we write α1 vE,Ax α2

if there is a substitution θ such that (σ1↓E,Ax)|Var(t) =Ax (σ2θ)|Var(t) and

t1 =Ax t2θ. We write α1 ≈Ax α2 if there is a renaming substitution ρ such

that σ1|Var(t) =Ax (σ2ρ)|Var(t) and t1 =Ax t2ρ.

Definition 20 (Most General Narrowing Sequence) Given a decompo-

sition (Σ, Ax,E), a narrowing sequence α : t ∗θ,E,Ax(tθ)↓E,Ax is called a most

general narrowing sequence if for any narrowing sequence

α′ : t ∗θ′,E,Ax(tθ
′)↓E,Ax such that α vE,Ax α′, then α ≈Ax α′.

Lemma 9 Let R = (Σ, Ax,E) be a decomposition of an equational theory

(Σ, E). Let SR be a complete narrowing strategy. If α : t ∗σ,E,Ax(tσ)↓E,Ax and

α is most general, then there is a narrowing sequence α′ : t ∗σ′,E,Ax(tσ
′)↓E,Ax

such that α′ ∈ S	R(t) and α ≈Ax α′.

Proof. By contradiction. Let α : t σ1,E,Ax t1 · · · tk−1 σk,E,Ax tk = (tσ)↓E,Ax.

Since there is no narrowing sequence α′ : t ∗σ′,E,Ax(tσ
′)↓E,Ax such that α′ ∈

S	R(t) and α′ ≈Ax α, by completeness of SR there is an alternative narrowing

sequence β : t θ1,E,Ax u1 · · ·un−1 θn,E,Ax un = (tθ)↓E,Ax in S	R(t) with θ =

θ1 · · · θn and n ≤ k such that (tn, σ1 · · ·σn) v!
E,Ax (un, θ1 · · · θn), i.e., there is

a substitution ρ such that tn↓E,Ax =Ax unρ and ((σ1 · · ·σn)↓E,Ax)|Var(t) =Ax

(θ1 · · · θnρ)|Var(t). Note that ρ cannot be a renaming, since ρ being a renam-

ing implies β ≈Ax α. Then, by confluence, there is a rewriting sequence

starting from un that reaches tσ↓E,Ax, i.e., (unρσn+1 · · ·σk)→∗E,Ax (tσ)↓E,Ax.

But this rewriting sequence can be lifted to a narrowing sequence, i.e., by

completeness of SR there is a narrowing sequence β′ : un ∗τ,E,Ax t
′′ and

a substitution ρ′ such that (σn+1 · · · σk)↓E,Ax|Var(un) =Ax (τρ′)|Var(un) and

(tσ)↓E,Ax =Ax t′′ρ′. Then, we can concatenate both narrowing sequences

β; β′ : t ∗θ,E,Ax un 
∗
τ,E,Ax t

′′ such that (σ1 · · ·σnσn+1 · · ·σk)↓E,Ax|Var(t) =Ax

(θ1 · · · θnρτρ′)|Var(t) and (tθ)↓E,Ax =Ax t
′′ρ′ρ. Since ρ is not a renaming, the

narrowing sequence β; β′ is more general than α. But this contradicts that α

is a most general narrowing sequence and, thus, the conclusion follows. 2

Theorem 10 (Variant Completeness of Folding Narrowing) LetR =

(Σ, Ax,E) be a decomposition of an equational theory (Σ, E). Let t1 be

a Σ-term and θ be an E,Ax-normalized substitution. Let SR be a com-

plete narrowing strategy. If t1θ →!
E,Ax t2 then there exist a term t′2 and

128



two E,Ax-normalized substitutions σ and ρ s.t. (t1 ∗σ,E,Ax t
′
2) ∈ S	R(t1),

θ|Var(t1) =Ax (σρ)|Var(t1), and t2 =Ax t
′
2ρ.

Proof. Given t1θ →!
E,Ax t2, by completeness of narrowing (Theorem 9), there

exist a term t′2 and two E,Ax-normalized substitutions σ and ρ such that

(α : t1 ∗σ,E,Ax t
′
2) ∈ SR(t1), θ|Var(t1) =Ax (σρ)|Var(t1), and t2 =Ax t

′
2ρ. Let us

assume that α is most general, since there is always at least one most general

narrowing sequence. Then, by Lemma 9, there exists (β : t1 ∗φ,E,Ax u) ∈
SR(t1) such that α ≈Ax β and the conclusion follows. 2

We can effectively compute a complete set of variants by folding narrowing

in the following way.

Corollary 2 (Computing the Variants) Let R = (Σ, Ax,E) be a decom-

position of an equational theory (Σ, E). Let t be a Σ-term. Let SR be a com-

plete narrowing strategy. If (t′, σ) ∈ [[t]]E,Ax, then there are t′′, σ′, and ρ such

that (t ∗σ′,E,Ax t
′′) ∈ S	R(t), t′′ is →E,Ax-irreducible, σ′ is →E,Ax-normalized,

ρ is a renaming, t′ =Ax t
′′ρ, and σ|Var(t) =Ax (σ′ρ)|Var(t).

We can conclude that the folding full-narrowing strategy is a variant-

complete narrowing strategy.

Corollary 3 Let R = (Σ, Ax,E) be a decomposition of an equational theory

(Σ, E). The folding full-narrowing strategy Full	R is variant-complete, i.e.,

for each Σ-term t, [[t]]E,Ax 'E,Ax [[t]]
Full	R
E,Ax .

Note that folding full-narrowing is not variant-minimal (and thus not

optimally variant-terminating).

Example 10 Consider the following decomposition without axioms

f(s(X)) = g(X) g(s(X)) = 0 f(s(s(0))) = 0.

For term f(X), we have that {(f(X), id), (g(X ′), {X 7→ s(X ′)}), (0, {X 7→
s(s(X ′′))})} is the set of most general variants. However, folding full-narrow-

ing will generate those three variants plus (0, {X 7→ s(s(0))}), which is sub-

sumed by variant (0, {X 7→ s(s(X ′′))})}:

1. The variant (f(X), id) without any narrowing step.

129



2. Variants with one narrowing step: (g(X ′), {X 7→ s(X ′)}) and

(0, {X 7→ s(s(0))}), i.e., (f(X) {X 7→s(X′)},E,Ax g(X ′)) ∈ Full	R and

(f(X) {X 7→s(s(0))},E,Ax 0) ∈ Full	R.

3. The variant (0, {X 7→ s(s(X ′′))}) with two narrowing steps:

(f(X) {X 7→s(X′)},E,Ax g(X ′) {X′ 7→s(X′′)},E,Ax 0) ∈ Full	R

In the next section, we refine the folding narrowing strategies and improve

over the folding full-narrowing strategy for computing variants.

5.4.1 Variant Narrowing Strategy

We have shown that the folding full-narrowing strategy Full	R is variant-

complete. However, there is another interesting aspect about narrowing

strategies:

Are there strategies more effective than full-narrowing which can

be extended to folding narrowing in order to compute variants?

We answered this question in the positive in our paper [54] with the notion

of variant narrowing strategy, but we improve the presentation here.

Let us first motivate with two ideas why a narrowing strategy which is an

alternative to full narrowing can be very useful for a decomposition. First, the

completeness of a narrowing strategy w.r.t. a decomposition is restricted to

normalized substitutions. Therefore, we are interested in narrowing strategies

that provide only narrowing sequences with normalized substitutions. Basic

narrowing was an attempt at this but, as we show in Example 6, it is incom-

plete for the modulo case as well as (possibly) non-terminating for computing

variants, as shown in Example 7. Here we present a narrowing strategy that

computes only normalized substitutions without losing completeness. Sec-

ond, applying narrowing E,Ax to perform (E∪Ax)-unification without any

restriction, as done in FullR, is very wasteful, because as soon as a rewrite

step →E,Ax is enabled in a term that has also narrowing steps  E,Ax, such

a rewrite step should always be taken before any further narrowing steps

are applied, thanks to confluence and coherence modulo Ax. This idea is

consistent with the implementation of rewriting logic [124] and, therefore,

130



the relation →!
E,Ax; E,Ax makes sense as an optimization of  E,Ax (see

[70] for discussion about this idea in a context without axioms). However,

this is still a naive approach, since a rewrite step and a narrowing step sat-

isfy a more general property, which is the reason for being able to take the

rewrite step and avoiding the narrowing step. Namely, for a decomposition

R = (Σ, Ax,E), if two narrowing steps t σ1,E,Ax t1 and t σ2,E,Ax t2 are

possible and we have that σ1 vAx σ2 (i.e., σ2 is more general than σ1), then

it is enough to take only the narrowing step using σ2. These improvements

are formalized as follows. First, we introduce a partial order between nar-

rowing steps, defining when a narrowing step is more general than another

narrowing step.

Definition 21 (Preorder and equivalence of narrowing steps) Let

R = (Σ, Ax,E) be a decomposition of (Σ, E). Let us consider two nar-

rowing steps α1 : t σ1,E,Ax s1 and α2 : t σ2,E,Ax s2. We write α1 �Ax α2

if σ1|Var(t) vAx σ2|Var(t) and α1 ≺Ax α2 if σ1|Var(t) <Ax σ2|Var(t) (i.e., σ2 is

strictly more general than σ1). We write α1 'Ax α2 if σ1|Var(t) 'Ax σ2|Var(t).

The relation α1 'Ax α2 between two narrowing steps from t defines a set of

equivalence classes between such narrowing steps. In what follows we will be

interested in choosing a unique representative α ∈ [α]'Ax
in each equivalence

class of narrowing steps from t. Therefore, α will always denote a chosen

unique representative α ∈ [α]'Ax
.

The relation�Ax provides an improvement on narrowing executions, since

narrowing steps with more general computed substitutions will always be se-

lected instead of narrowing steps with more instantiated computed substitu-

tions. Also, this relation ensures that, when both a rewriting step and a nar-

rowing step are available, the rewriting step will always be chosen. Finally,

the relation 'Ax provides another improvement, since only one narrowing

(or rewriting) step is chosen in each equivalence class, reducing the width

of the narrowing tree even more. The very last improvement is to restrict

to normalized computed substitutions, as motivated at the beginning of this

section.

Definition 22 (Variant Narrowing) Let R = (Σ, Ax,E) be a decomposi-

tion of (Σ, E). Given a Σ-term t, we define the variant narrowing strategy

VNR(t) = {t ∗σ,E,Ax s}, where: (i) σ|Var(t) is E,Ax-normalized and (ii) each

131



narrowing step u ρ,E,Ax v is defined as the narrowing step α : u ρ,E,Ax v

such that α is maximal w.r.t. the order �Ax, and α is the chosen unique

representative of its 'Ax-equivalence class.

Example 11 Consider Example 3. For the term t = X⊕Y⊕X⊕Y , there are

nearly 150 full narrowing steps, since subterm X⊕Y had 124 narrowing steps

as explained in Example 5 and there are even more combinations. However,

variant narrowing recognizes that this term is not yet normalized, i.e., X ⊕
Y ⊕X⊕Y → 0, and such a rewriting step is more general than any narrowing

step. Thus, variant narrowing performs only a rewriting step and avoids such

an exceptionally large number of narrowing steps. Note that there are two

other rewrite steps X⊕Y ⊕X⊕Y → Y ⊕Y and X⊕Y ⊕X⊕Y → X⊕X and

variant narrowing will choose one of these three as the unique representative

of the 'AC-equivalence class of rewrite steps.

We denote the extended folding version of variant narrowing, i.e., folding

variant narrowing, by VN	R. The condition in Definition 22 that σ|Var(t) is

E,Ax-normalized (in contrast to σ being E,Ax-normalized) is essential for

a correct behavior of the strategy, as shown below.

Example 12 Consider the following decomposition (Σ, ∅, E) where E con-

tains f(a, b,X)→ f(a, b), symbol f is AC, and X is a variable. Consider the

term t = f(a, a, a, b, b, b), whose normal form is f(a, b), i.e.,

f(a, a, a, b, b, b) →E,Ax f(a, b). Any rewriting sequence leading to its normal

form does not consider a normalized substitution, i.e., the first rewriting step

of any rewriting sequence will use substitution {X 7→ f(a, a, b, b)}. There-

fore, we cannot restrict ourselves to normalized substitution w.r.t. rewriting

steps.

On the other hand, consider now the term s = f(Y1, Y2) and the narrowing

step f(Y1, Y2) ρ2,E,Ax f(a, b) with ρ2 = {Y1 7→ f(a, b, Y3), X 7→ f(Y2, Y3)}.
The unifier ρ2 is not normalized, since f(a, b, Y3)↓E,Ax = f(a, b). Note that

we cannot normalize the substitution, since it would not correspond to any

narrowing step and we simply discard this narrowing step because there is an-

other more general narrowing step (i.e., (f(a, b), ρ2↓E,Ax) vAx (f(a, b), ρ1)).

Note that the ability to discard narrowing steps in confluent, terminating,

and coherent systems whose computed substitution is not normalized is a key

132



point for achieving termination for variant generation. The set of most gen-

eral unifiers computed by all the narrowing steps is as follows:

ρ1 = {Y1 7→ f(a, b), X 7→ Y2}
ρ2 = {Y1 7→ f(a, b, Y3), X 7→ f(Y2, Y3)}
ρ3 = {Y2 7→ f(a, b), X 7→ Y1}
ρ4 = {Y2 7→ f(a, b, Y3), X 7→ f(Y1, Y3)}
ρ5 = {Y1 7→ a, Y2 7→ b}
ρ6 = {Y1 7→ a, Y2 7→ f(b, Y3), X 7→ Y3}
ρ7 = {Y1 7→ b, Y2 7→ a}
ρ8 = {Y1 7→ b, Y2 7→ f(a, Y3), X 7→ Y3}
ρ9 = {Y1 7→ f(a, Y3), Y2 7→ b,X 7→ Y3}
ρ10 = {Y1 7→ f(a, Y3), Y2 7→ f(b, Y4), X 7→ f(Y3, Y4)}
ρ11 = {Y1 7→ f(b, Y3), Y2 7→ a,X 7→ Y3}
ρ12 = {Y1 7→ f(b, Y3), Y2 7→ f(a, Y4), X 7→ f(Y3, Y4)}

Note that the relation →!
E,Ax; E,Ax is (appropriately) simulated by

 +
E,Ax, since in the relation  +

E,Ax rewriting steps are always given prior-

ity over narrowing steps.

Lemma 10 (Normalization of Variant Narrowing) LetR = (Σ, Ax,E)

be a decomposition of (Σ, E). Let t be a Σ-term. If t is not E,Ax-irreducible,

then, relative to the unique choice of α ∈ [α]'Ax
in Definition 21 , there is a

unique  E,Ax-narrowing sequence from t performing only rewriting steps.

Proof. Immediate, since t is not E,Ax-irreducible and the theory is confluent

and sort-decreasing. 2

The following result ensures that variant narrowing is complete.

Theorem 11 (Completeness of Variant Narrowing) Let R =

(Σ, Ax,E) be a decomposition of (Σ, E). If α : t ∗σ,E,Ax(tσ)↓E,Ax such that

σ|Var(t) is E,Ax-normalized and α is a most general narrowing sequence, then

there exists σ′ such that t ∗σ′,E,Ax(tσ
′)↓E,Ax, and σ|Var(t) ≈Ax σ′|Var(t).

Proof. If α : t ∗σ,E,Ax(tσ)↓E,Ax such that σ|Var(t) is E,Ax-normalized and

α is a most general narrowing sequence, then it is sufficient to show that the

computed substitution at each step in α is maximal w.r.t. vAx.

133



We prove this by contradiction. Let us consider a narrowing step i ∈
{1, . . . , n} in α, i.e. ti σi,E,Ax ti+1, such that σi is not maximal w.r.t. vAx.

That is, there is an alternative narrowing step from ti, i.e., ti τ,E,Axw,

with a strictly more general substitution τ , i.e., there is a substitution τ ′

s.t. σi|Var(ti) =Ax (ττ ′)|Var(ti) and τ ′ is not a renaming. Note that, since

α is most general, there is no narrowing sequence w ∗φ,E,Ax tn and substi-

tution φ′ such that σ|Var(t) =Ax (σ1 · · ·σi−1τφφ
′)|Var(t). Then, we have that

tiσi →E,Ax ti+1 and that there is a term w′ such that tiσi →E,Ax w′ and

w′ =Ax wτ ′. By confluence, there is a term u such that ti+1 →∗E,Ax u

and w′ →∗E,Ax u. But then, for any narrowing sequence u ∗µ,E,Ax u
′ such

that µ|Var(ti+1) =Ax (σi+1 · · ·σn)|Var(ti+1), there is a whole narrowing sequence

t ∗σ′,E,Ax(tσ
′)↓E,Ax such that σ′|Var(t) = (σ1 · · ·σi−1τµ)|Var(t). This implies

that σ <Ax σ
′, since (σi · · ·σn)|Var(ti) =Ax (τµτ ′)|Var(ti). Therefore, we have

a contradiction because σ′ is strictly more general than σ. 2

Note that the previous theorem is only valid when E is confluent2 modulo

Ax, and not just ground confluent [119] modulo Ax, as shown by the following

example.

Example 13 Let us consider the following rewrite theory without axioms,

which is terminating and ground confluent but not confluent:

f(X) = 0 f(X) = g(X) g(0) = 0 g(s(X)) = g(X)

If we consider the term f(X) and the narrowing step taking the first equa-

tion, then we compute the most general substitution, i.e. f(X) id,E,Ax 0.

However, if we consider f(X) and the narrowing step that takes the sec-

ond equation, i.e., f(X) id,E,Ax g(X), we will compute an infinite number

of substitutions, i.e., ∀n ≥ 0 : g(X) ∗{X 7→sn(0)},E,Ax 0, and none of them is

more general than the identity substitution computed with the first equation.

The following interesting result holds for folding variant narrowing, but

not for folding full-narrowing.

Theorem 12 (Minimality of Folding Variant Narrowing) Let

R = (Σ, Ax,E) be a decomposition of (Σ, E). If α : t ∗σ,E,Ax(tσ)↓E,Ax with

2Note that a decomposition already requires confluence instead of ground confluence.

134



σ|Var(t) being E,Ax-normalized and α′ : t ∗σ′,E,Ax(tσ
′)↓E,Ax with σ′|Var(t) be-

ing E,Ax-normalized such that σ|Var(t) <Ax σ
′|Var(t), and α′ is a most general

narrowing sequence, then there is a narrowing sequence β : t ∗θ,E,Ax(tθ)↓E,Ax
in VN	R such that α′ ≈Ax β but there is no narrowing sequence

β′ : t ∗θ′,E,Ax(tθ
′)↓E,Ax in VN	R such that α ≈Ax β′.

Proof. The first statement is proved by the most generality of α′ and The-

orem 11, i.e., there is β : t ∗θ,E,Ax(tθ)↓E,Ax in VN	R such that α′ ≈Ax β.

The second statement is proved by contradiction, i.e., we asume that there

is β′ : t ∗θ′,E,Ax(tθ
′)↓E,Ax in VN	R such that α ≈Ax β′. For simplicity, we

assume that α′ ∈ VN	R and use α′ instead of β in the rest of the proof. Let

α and α′ be as follows:

α′ : t σ′1,E,Ax
t′1 σ′2,E,Ax

t′2 · · · t′m−1 σ′m,E,Ax t
′
m = (tσ′)↓E,Ax

and

α : t σ1,E,Ax t1 σ2,E,Ax t2 · · · tn−1 σn,E,Ax tn = (tσ)↓E,Ax

Let us consider the first narrowing step i ∈ {1, . . . , n} in α, i.e. ti−1 σi,E,Axti,

where there is a substitution τ such that σi|Var(ti) =Ax (σ′iτ)|Var(ti) and τ is not

a renaming. Since (σ1 · · · σi−1)|Var(t) ≈Ax (σ′1 · · ·σ′i−1)|Var(t), by coherence and

confluence, there are two terms w and w′ such that

tσ1 · · · σi−1 →∗E,Ax w, tσ′1 · · ·σ′i−1 →∗E,Ax w′, and w ≈Ax w′. Let ρ be such

that (σ1 · · ·σi−1)|Var(t) =Ax (σ′1 · · ·σ′i−1ρ)|Var(t) and w =Ax w′ρ. We can

add substitution σ′i to have rewrite sequences tσ1 · · ·σi−1σ
′
i →∗E,Ax wσ′i and

tσ′1 · · ·σ′i−1ρσ
′
i →∗E,Ax wσ′i. By completeness of narrowing, there exist substi-

tutions φ and φ′ and a most general narrowing sequence α′′ : ti−1 ∗φ,E,Ax u

such that σ′i|Var(ti−1) =Ax (φφ′)|Var(ti−1), and wσ′i =Ax uφ
′. But then there are

two narrowing steps from term ti−1, ti−1 σi,E,Ax ti and the first step of α′′

s.t. the first step of α′′ has a substitution more general than σi. But the VNR

strategy would have chosen the first step of α′′ instead of the narrowing step

ti−1 σi,E,Ax ti and this contradicts that there is β′ : t ∗θ′,E,Ax(tθ
′)↓E,Ax in

VN	R such that α ≈Ax β′. 2

Now, we know that VN	R is an efficient variant-complete and variant-

minimal strategy, so we can use it to effectively compute variants.

135



Corollary 4 Let R = (Σ, Ax,E) be a decomposition of an equational theory

(Σ, E). The folding variant narrowing strategy VN	R is variant-complete and

variant-minimal, i.e., for any Σ-term t, [[t]]E,Ax ≈Ax [[t]]
VN	
R

E,Ax.

Finally, we return to our running example for the VN	R strategy.

Example 14 Consider Example 9. For t = X⊕Y we get the following VN	R
steps with normalized substitutions:

(i) (X ⊕ Y, id) φ1(Z, φ1), using Equation (5.6) and substitution φ1 =

{X 7→ 0, Y 7→ Z},

(ii) (X ⊕ Y, id) φ2(Z, φ2), using Equation (5.6) and substitution φ2 =

{X 7→ Z, Y 7→ 0},

(iii) (X ⊕ Y, id) φ3(Z, φ3), using Equation (5.8) and substitution φ3 =

{X 7→ Z ⊕ U, Y 7→ U},

(iv) (X ⊕ Y, id) φ4(Z, φ4), using Equation (5.8) and substitution φ4 =

{X 7→ U, Y 7→ Z ⊕ U},

(v) (X ⊕ Y, id) φ5(0, φ5), using Equation (5.7) and substitution φ5 =

{X 7→ U, Y 7→ U},

(vi) (X ⊕ Y, id) φ6(Z1 ⊕ Z2, φ6), using Equation (5.8) and φ6 = {X 7→
U ⊕ Z1, Y 7→ U ⊕ Z2}.

Note that VN	R terminates (as Full	R does) after generating all these narrow-

ing steps.

In the following, we study under which conditions the folding variant

narrowing strategy is optimally variant-terminating, providing the best nar-

rowing strategy for computing variants in the modulo case but also in the

free theory, improving beyond basic narrowing.

5.5 The Finite Variant Property

An interesting case is when we know a priori that any Σ-term has a finite

number of most general variants.

136



Definition 23 (Finite variant property) [32] Let R = (Σ, Ax,E) be a

decomposition of an equational theory (Σ, E). Then (Σ, E), and thus R, has

the finite variant property (FV) iff for each Σ-term t, the set [[t]]E,Ax is finite.

We call R a finite variant decomposition of (Σ, E) iff R has the finite variant

property.

The following corollary is immediate for finite variant decompositions.

Corollary 5 Let R = (Σ, Ax,E) be a decomposition of an equational the-

ory (Σ, E) and SR be an E,Ax-variant-complete narrowing strategy. S	R is

variant-terminating iff R is a finite variant decomposition of (Σ, E).

Proof. Given a Σ-term t, for each (t′, σ) ∈ [[t]]E,Ax, by Corollary 2, there

are t′′, σ′, and ρ such that (t ∗σ′,E,Ax t
′′) ∈ S	R(t), t′′ is →E,Ax-irreducible,

σ′|Var(t) is →E,Ax-normalized, ρ is a renaming, t′ =Ax t
′′ρ, and σ|Var(t) =Ax

(σ′ρ)|Var(t). Since [[t]]E,Ax is finite and it contains the most general variants

w.r.t. vE,Ax, for each possible variant (u, φ) ∈ [[t]]?E,Ax, there is a node (u′, φ′)

in the narrowing tree such that (u, φ) vE,Ax (u′, φ′) and, thus, the narrowing

tree generated by S	R(t) has a bounded depth. 2

The folding variant narrowing VN	R is variant-minimal and the following

corollary holds for finite variant decompositions.

Corollary 6 If R = (Σ, Ax,E) is a finite variant decomposition of (Σ, E),

then VN	R is optimally variant-terminating.

Proof. By Corollary 4, VN	R is variant-minimal and, thus, the narrowing

tree generated by VN	R contains all and only all the variants of the set [[t]]E,Ax
for a given Σ-term t. Therefore, the narrowing tree is always the shortest

tree possible for generating the set of most general variants [[t]]E,Ax and we

conclude that VN	R is optimally variant-terminating. 2

5.5.1 Computing Variants for Theories with the Finite
Variant Property

Comon and Delaune characterize the finite variant property in terms of the

following boundedness property, which is equivalent to FV.

137



Lemma 11 [32] Let R = (Σ, Ax,E) be a decomposition of an equational

theory (Σ, E). R has the finite variant property if and only if for every term

t, there is a finite set Θ(t) of substitutions such that

∀σ,∃θ ∈ Θ(t),∃τ : (σ↓E,Ax)|Var(t) =Ax (θτ)|Var(t)∧(tσ)↓E,Ax =Ax ((tθ)↓E,Ax)τ

Definition 24 (Boundedness property) [32] Let R = (Σ, Ax,E) be a

decomposition of an equational theory (Σ, E). R has the boundedness prop-

erty (BP) iff for every term t there exists an integer n, denoted by #E,Ax(t),

such that for every E,Ax-normalized substitution σ the normal form of tσ is

reachable by an E,Ax-rewriting sequence whose length can be bounded by n

(thus independently of σ), i.e.,

∀t, ∃n,∀σ, t(σ↓E,Ax)
≤n−→E,Ax (tσ)↓E,Ax.

Lemma 11 and Definition 24 allow the following result.

Theorem 13 [32] Let R = (Σ, Ax,E) be a decomposition of an equational

theory (Σ, E). Then, R satisfies the boundedness property if and only if R is

a finite variant decomposition of (Σ, E).

Obviously, if for a term t, the minimal length of a rewrite sequence to the

canonical form of an instance tσ, with σ normalized, cannot be bounded, the

theory does not have the finite variant property. It is easy to see that for the

addition equations

0 + Y = Y s(X) + Y = s(X + Y )

the term t = X + Y , and the family of substitutions σn = {X 7→ sn(0)},
n ∈ N, this is the case, and therefore, since FV ⇔ BP , the addition theory

lacks the finite variant property.

Example 15 Consider again Example 7 consisting of the rewrite theory R =

(Σ, ∅, E) where E is the set of confluent and terminating rules E = {f(x)→
x, f(f(x))→ f(x)} and Σ contains only the unary symbol f and a constant

a. The theory has the finite variant property as it does have the boundedness

property, since for any term t and a normalized substitution θ, a bound for t

is given by the number of f symbols in the term.

138



Proposition 2 (Computing the Finite Variants) [54] Let

R = (Σ, Ax,E) be a finite variant decomposition of an order-sorted equa-

tional theory (Σ, E). Let t be a Σ-term and #E,Ax(t) = n. Then, (s, σ) ∈
[[t]]E,Ax if and only if there is a narrowing sequence t ≤nσ,E,Ax s such that s is

→E,Ax-irreducible and σ is →E,Ax-normalized.

Example 16 Consider again Example 3. For this theory, narrowing clearly

does not terminate because Z1 ⊕ Z2 {Z1 7→X1⊕Z′1, Z2 7→X1⊕Z′2},E,Ax Z
′
1 ⊕ Z ′2 and

this can be repeated infinitely often. This equational theory has the bounded-

ness property, as it is shown to have FV in Example 26 below. A bound for

this theory is the number of ⊕ symbols in the term, so that the narrowing tree

can be restricted to depth 1 for the term t = Z1⊕Z2. Let us explain in detail

why the bound is the number of ⊕ symbols. Given the narrowing sequence

Z1⊕Z2 {Z17→X1⊕Z′1,Z27→X1⊕Z′2},E,Ax Z
′
1⊕Z ′2 {Z′17→X′1⊕Z′′1 ,Z′27→X′1⊕Z′′2 },E,Ax Z

′′
1⊕Z ′′2
(5.11)

we have the variant (Z ′′1⊕Z ′′2 , ρ) with ρ = {Z1 7→X1⊕X ′1⊕Z ′′1 , Z2 7→X1⊕X ′1⊕
Z ′′2 , Z

′
1 7→X ′1 ⊕ Z ′′1 , Z ′2 7→X ′1 ⊕ Z ′′2}. Also, the normalization sequence corre-

sponding to tρ that mimics the narrowing sequence (5.11) is

X1 ⊕X ′1 ⊕ Z ′′1 ⊕X1 ⊕X ′1 ⊕ Z ′′2 →E,Ax X
′
1 ⊕ Z ′′1 ⊕X ′1 ⊕ Z ′′2 →E,Ax Z

′′
1 ⊕ Z ′′2

(5.12)

However, we can also reduce tρ to the same normal form of (5.12) using only

one application of (5.8) and the following normalized substitution ρ = {X 7→
X1 ⊕X ′1, Y 7→ Z ′′1 ⊕ Z ′′2}:

X1 ⊕X ′1 ⊕ Z ′′1 ⊕X1 ⊕X ′1 ⊕ Z ′′2 →E,Ax Z
′′
1 ⊕ Z ′′2 (5.13)

The trick is that rule (5.8) allows combining all pairs of canceling terms and

thus gets rid of all of them at once. That is why the theory has the finite

variant property.

At this point, we have three different ways of computing variants that we

would like to discuss with some examples:

1. Computing the narrowing tree associated to a term t up to the bound

#E,Ax(t) and extracting the variants from the narrowing tree.

139



2. Computing the narrowing tree using Full	R and extracting the variants

from the narrowing tree.

3. Computing the narrowing tree using VN	R and extracting the variants

from the narrowing tree.

VN	R is the best approach, since the other two approaches are cruder and

can be massively inefficient. This can be illustrated as follows.

Example 17 Consider again Example 3 and the term u = X ⊕ Y ⊕X ⊕ Y ,

whose most general variant is (0, id). As explained in Example 11, this term

can be normalized in one rewriting step. However, the approaches (1)–(3)

work very differently.

1. Since we showed that the narrowing bound is the number of ⊕ symbols,

we have #E,Ax(u) = 3. The full narrowing tree up to bound 3 is huge

and we do not include it here (see Examples 5, 9, and 11).

2. Full	R will behave a little better by producing only narrowing sequences

of length 1, since it will compute the rewriting step to the term 0 among

the 150 narrowing steps, but all these extra narrowing steps are unnec-

essary. Again, we are not including here the Full	R narrowing tree (see

Examples 5, 9, and 11).

3. Only VN	R performs just one rewriting step to the normal form, being

optimal in both length and number of sequences (see Example 11).

In the following section, we study conditions for checking whether a theory

has the finite variant property or not.

5.5.2 Necessary and Sufficient Conditions for FV

Deciding whether an equational theory has the finite variant property is a

nontrivial task, since we have to decide whether we can stop generating nor-

malized substitution instances by narrowing for each term. We present here

an algorithm for checking whether a decomposition of an equational theory

has the finite variant property (FV) which is based on two notions: (i) a

new notion, called variant-preservingness (VP), that ensures that an intu-

itive bottom-up generation of variants is complete; and (ii) the property that

140



there are no infinite sequences when we restrict ourselves to such intuitive

bottom-up generation of variants (FVNS). In what follows, we show that

(V P ∧FV NS)⇒ FV . Note that the folding variant narrowing VN	R will be

used for effectively computing the variants but a different narrowing strat-

egy will be used for a bottom-up generation of variants in the procedure of

detecting whether a theory has the finite variant property (FV).

Variant-preservingness (VP) ensures that we can perform an intuitive

bottom-up generation of variants. The following notion is useful for the

definition of VP.

Definition 25 (Variant-pattern) Let R = (Σ, Ax,E) be a decomposition

of (Σ, E). We call a term f(t1, . . . , tn) a variant-pattern if all subterms

t1, . . . , tn are →E,Ax-irreducible. We say that a term t has a variant-pattern

if there is a variant-pattern t′ s.t. t′ =Ax t.

It is worth pointing out that whether a term has a variant-pattern is de-

cidable, assuming a finitary and complete Ax-matching procedure: given a

term t, t has a variant-pattern t′ iff there is a symbol f ∈ Σ with arity k

and variables X1, . . . , Xk of the appropriate top sorts and there is a substi-

tution θ such that t =Ax f(X1, . . . , Xk)θ and θ is E,Ax-normalized, where

t′ = f(X1, . . . , Xk)θ. We can simplify this procedure when term t is rooted

by an AC symbol to say that we only have to consider the same AC symbol

at the root of t, instead of every symbol. And we can simplify this procedure

even more when term t is rooted by a free function symbol (i.e., such a sym-

bol does not satisfy any axiom of Ax) to say that t has a variant-pattern if

it is already a variant-pattern, i.e., every argument of the root symbol must

be E,Ax-irreducible.

Variant-preservingness induces a bottom-up variant generation process;

note that bottom-up variant generation is not the same as innermost nar-

rowing.

Definition 26 (Variant-preserving) Let R = (Σ, Ax,E) be a decomposi-

tion of (Σ, E). We say that R is variant-preserving (VP) if for any variant-

pattern t, either t is →E,Ax-irreducible or there is a →E,Ax step at the top

position with a →E,Ax-normalized substitution.

Note that a theory can have the finite variant property even if it is not

variant-preserving.

141



Example 18 Consider the decomposition of Example 12. This theory is not

variant-preserving, e.g., given the term t = f(X, Y ) and any normalized sub-

stitution θ ∈ {X 7→ f(an), Y 7→ f(bn, Z)} for n ≥ 2, there is no normalized

reduction for tθ. However, the theory does have the boundedness property,

and therefore FV, since for any term rooted by f (which is the only non-

constant symbol), its normal form can be obtained in at most one step.

The following example motivates why narrowing sequences have to be

restricted for a bottom-up variant generation.

Example 19 Consider the decomposition f(f(X)) = X without axioms.

This theory is well-known to be non-terminating for narrowing, e.g.,

c(f(X), X) {X 7→f(X′)},E,Ax c(X
′, f(X ′)) {X′ 7→f(X′′)},E,Ax c(f(X ′′), X ′′) · · ·

Although the theory is non-terminating for narrowing, it is FV. When we

consider all possible instances of the term c(f(X), X) for normalized substi-

tutions, we obtain the term c(f(X), X) itself and the sequence c(f(X), X)

 {X 7→f(X′)},E,Ax c(X
′, f(X ′)). The theory does have the boundedness prop-

erty, and therefore FV, since for any term t and a normalized substitution θ,

a bound for t is the number of f symbols in the term.

Therefore, for a bottom-up generation of variants in a finite decomposi-

tion, not all the narrowing sequences are relevant, as shown in the previous

example, and thus we must identify the relevant ones associated to the notion

of variant pattern.

Definition 27 (Shortest Rewrite Sequence) Given a decomposition

(Σ, Ax,E), a rewrite sequence t0 →p1,E,Ax t1 · · · →pn,E,Ax tn is called shortest

if there is no sequence t0 →m
E,Ax t

′
m such that m < n and tn =Ax t

′
m.

Definition 28 (Variant-preserving sequences) Let R = (Σ, Ax,E) be a

decomposition of (Σ, E). A rewrite sequence α : t0 →p1,E,Ax t1 · · · →pn,E,Ax tn

is called variant-preserving if, for i ∈ {1, . . . , n}, ti−1|pi has a variant-pattern

and α is a shortest rewrite sequence. A narrowing sequence t0 p1,σ1,E,Ax t1 · · ·
 pn,σn,E,Ax tn, σ = σ1 · · ·σn, is called variant-preserving if σ is

E,Ax-normalized and t0σ →p1,E,Ax t1σ · · · →pn,E,Ax tn is variant-preserving.

142



The set of variant-preserving sequences is not computable in general.

However, we provide sufficient conditions in Section 5.6. Note that we are not

going to use variant-preserving narrowing sequences for computing variants

but only for deciding whether a theory has the finite variant property.

Example 20 The infinite narrowing sequence of Example 19 is not variant-

preserving, since for any finite prefix of length greater than 1 the computed

substitution is non-normalized. The only variant-preserving sequences for the

term c(f(X), X) are the term itself and the one-step sequence with substitu-

tion {X 7→ f(X ′)}.

Example 21 For Example 3, the narrowing sequence

Z1⊕Z2 {Z17→X1⊕Z′1,Z2 7→X1⊕Z′2},E,Ax Z
′
1⊕Z ′2 {Z′17→X′1⊕Z′′1 ,Z′2 7→X′1⊕Z′′2 },E,Ax Z

′′
1⊕Z ′′2

is not a variant-preserving sequence, since the alternative rewrite sequence

X1 ⊕X ′1 ⊕ Z ′′1 ⊕X1 ⊕X ′1 ⊕ Z ′′2 →E,Ax Z
′′
1 ⊕ Z ′′2 is shorter.

The following result provides sufficient conditions for the finite variant

property.

Theorem 14 (Sufficient conditions for FV) Let R = (Σ, E,R) be a de-

composition of (Σ, E). If (i) R is variant-preserving (VP), and (ii) there is

no infinite variant-preserving narrowing sequence (FVNS), then R satisfies

the finite variant property.

Proof. Since we assume that the Ax unification algorithm is finitary, and

therefore the narrowing tree is finitely branching, by König’s Lemma the tree

of variant-preserving narrowing sequences is finite. Given a term t, we de-

note by #(t) the length of the longest variant-preserving narrowing sequence

from t. We prove that, for any substitution σ, t(σ↓E,Ax)→≤nE,Ax (tσ)↓E,Ax by

induction on n = #(t).

• (n = 0) Then t is irreducible and, for any substitution σ, t(σ↓E,Ax) is

also irreducible.

• (n > 0) Let t = f(t1, . . . , tk) and σ be a substitution. Let us assume

that tσ is eventually reduced at the top in every variant-preserving

rewrite sequence. Otherwise, we can prove by structural induction

143



and the boundedness property that the bound for t is the sum of the

bounds for the arguments t1, . . . , tk. We have #(ti) < #(t). By in-

duction hypothesis, for any substitution σ, ti(σ↓E,Ax) is bounded by

#(ti) for i ∈ {1, . . . , k}. Let us pick any variant (t′i, ρi) for each ti,

i ∈ {1, . . . , k} such that σ vAx (ρ1 · · · ρk). Let t′ = f(t′1, . . . , t
′
k). By

variant-preservingness, there is a rule l → r ∈ E and a normalized

substitution θ such that t′ =Ax lθ. Since #(r) < #(t), we can apply the

induction hypothesis and, for any substitution σ′, r(σ′↓E,Ax) is bounded

by #(r). Since θ is normalized, rθ is also bounded by #(r). Note that

#(t1) + · · ·+ #(tk) + #(tr) < #(t). Thus, for any substitution σ, tσ is

bounded by #(t). 2

Note that variant-preservingness is not a necessary condition for FV, as

shown in Example 18. However, there are many theories where lack of variant

preservingness causes loss of FV, as illustrated below.

Example 22 Consider again Example 3, which as we show in Example 26

below is an FV decomposition, but let us assume now that some variables in

rules (5.7) and (5.8) of that example are restricted to a subsort Element, so

that they cannot match any term rooted by ⊕. That is, we have two sorts

Xor and Element such that ⊕ : Xor Xor → Xor and all other symbols a, b,

0, pk( , ), and sk( , ) are defined on sort Element and not on sort Xor. The

new equations are as follows:

X:Xor ⊕ 0 = X:Xor

X:Element⊕X:Element = 0 (5.14)

X:Element⊕X:Element⊕ Y :Xor = Y :Xor (5.15)

Let us consider the term t = a⊕ (b⊕ (a⊕ b)). Rule (5.14) cannot be applied

at any position, and only rule (5.15) can be applied at the top. However,

there is no possible application with a normalized substitution and thus term

t cannot be reduced to its normal form in one step, i.e., a⊕(b⊕(a⊕b))→E,Ax

b ⊕ b →E,Ax 0. Indeed, note that given a term s = X:Xor ⊕ Y :Xor and any

normalized substitution σ, the number of reduction steps for sσ to reach its

normal form clearly depends on the number of ⊕ symbols introduced by σ,

and therefore this modified example fails to satisfy FV.

144



Although VP is not a necessary condition, the absence of infinite variant-

preserving narrowing sequences is a necessary condition for FV.

Theorem 15 (Necessary condition for FV) Let R = (Σ, E,R) be a de-

composition of (Σ, E). If there is an infinite variant-preserving narrowing

sequence, then R does not have the finite variant property.

Proof. Let us consider an infinite variant-preserving narrowing sequence.

We can take any finite prefix t ∗σ,E,Ax s and build a variant-preserving rewrite

sequence tσ →∗E,Ax (tσ)↓E,Ax. Note that σ|Var(t) is E,Ax-normalized by defi-

nition. Thus, we obtain an infinite number of rewrite sequences with increas-

ing length. Since the theory is terminating for rewriting and the computed

substitutions are normalized, the rewrite sequences are increasing in length be-

cause the computed substitutions are increasing in depth. Since these rewrite

sequences are the shortest ones, this contradicts the boundedness property. 2

5.6 Checking the Finite Variant Property

In the following we show that the property of being variant-preserving is

clearly checkable, but the absence of infinite variant-preserving narrowing

sequences is not computable in general. In Section 5.6.2, we approximate

the absence of infinite variant-preserving narrowing sequences by a checkable

condition using the dependency pairs technique of [62] for the modulo case.

5.6.1 Checking Variant-Preservingness

The following class of equational theories is relevant. The notion of Ax-

descendants is a straightforward extension of the standard notion of descen-

dant for rules.

Definition 29 (Descendants) [119] Let A : t
p→l→r s and q ∈ Pos(t). The

set q\\A of descendants of q in s w.r.t. A is defined as follows:

q\\A =


{q} if q < p or q ‖ p (i.e., q 6≤ p and p 6≤ q),

{p.p3.p2 | r|p3 = l|p1} if q = p.p1.p2 with p1 ∈ PosX (l),

i.e., p1 is a variable position

∅ otherwise.

145



t3

t1
p

E,Ax
//

��
Ax (p\\t3=∅)
KS

p′ (p′≤p,p′\\t3=∅)
E,Ax��

t2

∗
E,Ax��

t′3

∗
E,Ax��
t5 t4+3Ax
ks

Figure 5.2: Upper-Ax-coherence

t1 E,Ax
//

KS

Ax
��

t2

∗
E,Ax��

t3

+
E,Ax��
t5 t4+3Ax
ks

Figure 5.3: Ax-coherence

IfQ ⊆ Pos(t) thenQ\\A denotes the set
⋃
q∈Q q\\A. The notion of descendant

extends to rewrite sequences in the obvious way. If Q is a set of pairwise

disjoint positions in t and A : t→∗ s, then the positions in Q\\A are pairwise

disjoint. The notion of descendant is extended to an equational theory Ax

as follows.

Definition 30 (Ax-descendants) Let Ax be a set of regular and

sort-preserving Σ-equations. Let
↔
Ax = {u → v | u = v or v = u ∈ Ax}.

Given two terms t =Ax s, i.e., A : t→∗↔
Ax
s, and a set Q of pairwise disjoint

positions in t, the Ax-descendants of Q in s are Q\\s = Q\\A.

Now we can introduce the relevant notion of upper-Ax-coherence, de-

picted in Figure 5.2. Note that dotted arrows imply they are involved in an

existential quantifier.

Definition 31 (Upper-Ax-coherence) Let R = (Σ, Ax,E) be a decompo-

sition of (Σ, E). We say R is upper-Ax-coherent iff for all t1, t2, t3, t1
p→E,Ax

t2, t1 =Ax t3, p > Λ, and p\\t3 = ∅ imply that for all p′ ≤ p such that

p′\\t3 = ∅, there exist t′3, t4, t5 such that t1
p′→E,Ax t

′
3, t2 →∗E,Ax t4, t′3 →∗E,Ax t5,

and t4 =Ax t5.

Assuming Ax-coherence (defined by Condition (4) in Section 5.1 and depicted

in Figures 5.1 and 5.3, both identical but using R,Ax or E,Ax labels), check-

ing upper-Ax-coherence consists in considering each term t in each equation

t = t′ ∈ Ax (or its reverse), finding a position p ∈ Pos(t) s.t. p > Λ and a

substitution σ s.t. tσ|p is →E,Ax-reducible and then, if p = p1. · · · .pk, then,

146



for i ∈ {1, . . . , k − 1}, tσ|pi must be →E,Ax-reducible. In general, upper-

Ax-coherence is much more demanding than Ax-coherence, as shown below.

Example 23 Let us consider the equational theory E = {g(f(X))→ d, a→
c} and Ax = {g(f(f(a))) = g(b)}. For the term t = g(f(f(a))), subterm a

is reducible, t =Ax g(b), but subterms f(f(a)) and f(a) are not reducible and

thus the theory is not upper-Ax-coherent. However, the theory is trivially

Ax-coherent because of the use of symbol g at the top of both sides of the

equation in Ax.

Note that upper-AC-coherence and AC-coherence coincide, since the ax-

ioms of associativity and commutativity can never satisfy t1 =AC t3, p > Λ,

and p\\t3 = ∅. We can now provide an algorithm for checking variant-

preservingness.

Theorem 16 (Checking Variant-preservingness) Let R = (Σ, Ax,E)

be a decomposition of (Σ, E) that is upper-Ax-coherent. R has the variant-

preserving property iff for all l → r, l′ → r′ ∈ E (possibly renamed s.t.

Var(l) ∩ Var(l′) = ∅) and for each X ∈ Var(l), the term t = lθ, where

θ = {X 7→ l′} is an order-sorted substitution, satisfies that either: (i) t does

not have a variant-pattern, or (ii) otherwise there is a normalized reduction

on t.

Proof. The only if part is immediate by definition. For the if part, we con-

sider a term t = f(t1, . . . , tk) such that t1, . . . , tk are→E,Ax-irreducible terms.

If t is →E,Ax-irreducible, we are done. Otherwise, there is a rule l → r ∈ E
and a substitution θ such that t = lθ. If θ is →E,Ax-normalized, we are done.

Otherwise, we prove below that there is a rule l′ → r′ ∈ E and a substitution

θ′ such that t = l′θ′ and θ′ is →E,Ax-normalized.

Let l → r ∈ E and θ be such that θ has the maximum number of redexes

possible for t. Let n be such a maximum number. We prove the fact by

induction on n.

(n = 0) This means that θ is →E,Ax-normalized and we are done.

(n > 0) Let X 7→ u be one of the non-normalized bindings in θ. Let p be

one of the topmost positions in u with an actual redex, i.e., there is

147



a rule l̂ → r̂ ∈ E and a substitution σ such that u|p =Ax l̂σ. We can

take the maximum prefix û of u with no redexes and build a substitution

θ̂ = {X 7→ û[l̂]p}. Let us assume that û[l̂]p is properly renamed so that

Var(û[l̂]p) ∩ Var(l) = ∅. There is a substitution ρ such that θ =Ax θ̂ρ.

Since the terms t1, . . . , tk are irreducible, l̂ is not a subterm of any of

them and there is a context C[ ] of t and another context Ĉ[ ] of lθ̂

such that C[ ] =Ax Ĉ[ ] and l̂ must overlap with Ĉ[ ]. Then, p = Λ,

because of coherence, i.e., if u|p is a redex, then u must also be a redex.

Just note that a coherence completion algorithm adds rules of the form

C[lσ] → C[rσ] for any rule l → r where C[ ] and σ are determined by

the equational theory Ax. Now, by the condition given in the Theorem,

there is a normalized substitution on lθ̂, i.e., there is a rule l′ → r′

and a substitution τ such that lθ̂ =Ax l
′τ and τ is →E,Ax-normalized.

Finally, when we consider the term l′τρ, we can apply the induction

hypothesis because ρ contains less redexes than θ and obtain that there

is a rule l′′ → r′′ and a substitution τ ′ such that t =Ax l
′τρ =Ax l

′′τ ′

and τ ′ is →E,Ax-normalized. 2

The upper-Ax-coherence condition is necessary, as shown below.

Example 24 The theory of Example 23 satisfies the conditions of The-

orem 16 except upper Ax-coherence. That is, when the left-hand sides

g(f(X)) and a are used to build the term g(f(a)), this term does not have

a variant-pattern, as required by Theorem 16. Similarly, when the properly

renamed left-hand sides g(f(X)) and g(f(X ′)) are used to build the term

g(f(g(f(X ′)))), this term does not have a variant-pattern either. However,

according to Definition 26, we have to test also the variant-pattern g(b). Al-

though this term is reducible, it is not →E,Ax-reducible with a normalized

substitution. Thus the equational theory is not variant-preserving.

Let us first show an example of a theory that is not variant-preserving.

Example 25 Let us consider again Example 12. Let us check this rewrite

theory with the condition from Theorem 16. Using the rule given with the

renamed version f(a, b,X ′) → f(a, b) we get lθ = f(a, b, a, b,X ′), which has

a variant-pattern, namely f(f(a, a,X ′), f(b, b)) where the extra appearances

of f inside are to show which are the irreducible subterms. Also, there is no

148



reduction with a normalized substitution, since the only reduction possible is

by using the given rule, with X renamed to V and the substitution σ = {V 7→
f(a, b,X ′)} which is not normalized. So this theory is not variant-preserving.

Let us prove that the exclusive or theory has the variant-preservingness

property.

Example 26 Let R = (Σ, E,R) be the exclusive or theory from Example 3

(without pk, sk), i.e., with only (5.6)–(5.8) used as rules. Using Theorem 16

we find that this theory is variant-preserving. All the combinations of rules

not involving (5.8) as the first rule do not have a variant-pattern, let us just

show one of the combinations of rule (5.8) with itself where l = X ⊕X ⊕ Y
and l′ = X ′ ⊕X ′ ⊕ Y ′. We get two terms, one for each of the substitutions

θ1 = {X 7→ l′} and θ2 = {Y 7→ l′}. We get lθ1 = X ′ ⊕X ′ ⊕ Y ′ ⊕X ′ ⊕X ′ ⊕
Y ′ ⊕ Y , which does not have a variant-pattern. On the other hand, lθ2 =

X⊕X⊕X ′⊕X ′⊕Y ′ does have a variant-pattern, but has also a normalized

reduction with another renaming of rule (5.8), namely V ⊕ V ⊕W → W ,

and substitution σ = {V 7→ X ⊕X ′,W 7→ Y ′}. Note that the theory has the

finite variant property (FV), since it is VP and the right hand sides of all

the equations are constants or variables, which trivially satisfies the FVNS

property.

5.6.2 Checking Finiteness of Variant-Preserving Narrowing
Sequences

In this section, we approximate the absence of infinite variant-preserving

narrowing sequences by a checkable condition using the dependency pairs

technique of [62] for the modulo case. Note that we do not really extend

the dependency pairs technique to narrowing, since we do not allow extra

variables in right-hand sides of rules; see [5] for an extension of the depen-

dency pairs technique to narrowing, and [99] for termination of narrowing

using the dependency pair technique. Termination of narrowing is a much

harder problem than that of termination of rewriting [6] and we do not prove

that narrowing or folding variant narrowing terminate; indeed recall that we

are only interested in termination of the variant generation process rather

than termination of narrowing strategies in general. In this section, we reuse

149



the dependency pair technique and approximate the property of the absence

of infinite variant-preserving narrowing sequences by avoiding any possible

cycle in function calls. For avoiding cycles we use the dependency graph and

adapt the notion of dependency pair chain to the variant case.

First, we need to extend the notion of a defined symbol. An equation

u = v is called collapsing if v ∈ X or u ∈ X . We say a theory is collapse-

free3 if all its equations are non-collapsing.

Definition 32 (Defined Symbols for Rewriting Modulo Equations)

[62] Let (Σ, Ax,R) be an order-sorted rewrite theory with Ax collapse-free.

Then the set of defined symbols D is the smallest set such that D = {root(l) |
l→ r ∈ R} ∪ {root(v) | u = v ∈ Ax or v = u ∈ Ax, root(u) ∈ D}.

In order to correctly approximate the dependency relation between de-

fined symbols in the theory, we need to extend the equational theory in the

following way.

Definition 33 (Adding Instantiations) [62] Given an order-sorted

rewrite theory R = (Σ, Ax,R) with Ax collapse-free, let InsAx(R) be a set

containing only rules of the form lσ → rσ (where σ is a substitution and

l → r ∈ R). InsAx(R) is called an instantiation of R for the equations

Ax iff InsAx(R) is the smallest set such that: (a) R ⊆ InsAx(R), (b) for

all l → r ∈ R, all v such that u = v ∈ Ax or v = u ∈ Ax, and all

σ ∈ CSUAx(v = l), there exists a rule l′ → r′ ∈ InsAx(R) and a variable

renaming ρ such that lσ =Ax l
′ρ and rσ =Ax r

′ρ.

Note that when Ax = ∅ or Ax contains only AC or C axioms, InsAx(R) = R.

Dependency pairs are obtained as follows. Since we are dealing with the

modulo case, it will be notationally more convenient to use terms directly in

dependency pairs, without the usual capital letters for the top symbols.

Definition 34 (Dependency Pair) [62] Let R = (Σ, Ax,R) be an order-

sorted rewrite theory with Ax collapse-free. Let InsAx(R) be the instantia-

tions of R for the equations Ax. If l→ C[g(t1, . . . , tm)] is a rule of InsAx(R)

3Note that regularity does not imply collapse-free, e.g., equation (5.6) of Example 3 is
regular but also collapsing. Note also that if Ax contains collapsing axioms such as the
identity axiom (5.6), it may be possible to use the variant based technique in [42] (see also
the discussion in Section 5.8) to transform a decomposition (Σ, Ax,R) into a semantically

equivalent one (Σ, Ax0, R ∪
−→
A clps) where Ax0 is collapse-free and

−→
A clps are rewrite rules

for the collapse axioms.

150



with C a context and g a defined symbol in InsAx(R), then 〈l, g(t1, . . . , tm)〉
is called a dependency pair of R.

Example 27 (Abelian Group) The following presentation of the Abelian

group theory, called R∗ = (Σ, Ax,E), has been shown to satisfy the finite

variant property in [32]. The operators Σ are ∗ , ( )−1, and 1. The set of

equations Ax consists of associativity and commutativity for ∗ . The rules

E are:

x ∗ 1 → x (5.16)

1−1 → 1 (5.17)

x ∗ x−1 → 1 (5.18)

x−1 ∗ y−1 → (x ∗ y)−1 (5.19)

(x ∗ y)−1 ∗ y → x−1 (5.20)

x−1−1 → x (5.21)

(x−1 ∗ y)−1 → x ∗ y−1 (5.22)

x ∗ (x−1 ∗ y) → y (5.23)

x−1 ∗ (y−1 ∗ z) → (x ∗ y)−1 ∗ z (5.24)

(x ∗ y)−1 ∗ (y ∗ z) → x−1 ∗ z (5.25)

The AC-dependency pairs for this rewrite theory are as follows.

(5.19)a: 〈x−1 ∗ y−1 , (x ∗ y)−1〉
(5.19)b: 〈x−1 ∗ y−1 , x ∗ y〉
(5.22)a: 〈(x−1 ∗ y)−1 , x ∗ y−1〉
(5.22)b: 〈(x−1 ∗ y)−1 , y−1〉
(5.20)a: 〈(x ∗ y)−1 ∗ y , x−1〉
(5.24)a: 〈x−1 ∗ y−1 ∗ z , (x ∗ y)−1 ∗ z〉
(5.24)b: 〈x−1 ∗ y−1 ∗ z , (x ∗ y)−1〉
(5.24)c: 〈x−1 ∗ y−1 ∗ z , x ∗ y〉
(5.25)a: 〈(x ∗ y)−1 ∗ y ∗ z , x−1 ∗ z〉
(5.25)b: 〈(x ∗ y)−1 ∗ y ∗ z , x−1〉

We have used the AProVE tool [63] to generate the dependency pairs.

AProVE first applies the coherence algorithm of [62] to this example, which

is unnecessary here and thus we drop the dependency pairs created that way.

151



The relevant notions from the dependency pairs technique are chains of de-

pendency pairs and the dependency graph.

Definition 35 (Chain) [12] Let R = (Σ, Ax,R) be an order-sorted rewrite

theory with Ax collapse-free. A sequence of dependency pairs 〈s1, t1〉〈s2, t2〉 · · ·
〈sn, tn〉 of R is an R-chain if there is a substitution σ such that tjσ →∗R,Ax
sj+1σ holds for every two consecutive pairs 〈sj, tj〉 and 〈sj+1, tj+1〉 in the

sequence.

Definition 36 (Dependency Graph) [12] Let R = (Σ, Ax,R) be an

order-sorted rewrite theory with Ax collapse-free. The dependency graph of

R is the directed graph whose nodes (vertices) are the dependency pairs of

R and there is an arc (directed edge) from 〈s, t〉 to 〈u, v〉 if 〈s, t〉〈u, v〉 is a

chain.

Chains are not computable in general and an approximation must be

performed. The notions of connectable terms and the estimated dependency

graph as defined in [12] provide a useful approximation of the dependency

graph. The estimated dependency graph can be computed using the Cap

and Ren procedures [12]: For any term t ∈ TΣ(X ), let Cap(t) replace each

proper subterm rooted by a defined symbol by a fresh variable and let Ren(t)

independently rename all occurrences of variables in t by fresh variables. Note

that such an estimated dependency graph has been used in all examples in

this section.

Example 28 The dependency graph for Example 27 is shown in Figure 5.4.

It was created with AProVE [63]. We see that there are self-loops on (5.19)b,

(5.22)b, (5.24)a, (5.24)c and (5.25)a. (5.19)a has a loop with (5.22)a, (5.22)a

has a loop with (5.24)b, and so on. It is a very highly connected graph.

The most important notion for the absence of infinite narrowing sequences

is that of a cycle in the dependency graph.

Definition 37 (Cycle) [12] A nonempty set P of dependency pairs is called

a cycle if, for any two dependency pairs 〈s, t〉, 〈u, v〉 ∈ P, there is a nonempty

path from 〈s, t〉 to 〈u, v〉 and from 〈u, v〉 to 〈s, t〉 in the dependency graph that

traverses dependency pairs from P only.

152



(5.19)a ..(5.19)boo //

xxqqq
qqq

qqq
qqq

�� &&MM
MMM

MMM
MMM

M

++VVVV
VVVVV

VVVVV
VVVVV

VVVVV
VVV

,,YYYYYY
YYYYYY

YYYYYY
YYYYYY

YYYYYY
YYYYYY

YYYYYY
YY

		
(5.20)a // --(5.22)aooqqnn

rreeeeeee
eeeeee

eeeeee
eeeeee

eeeeee
eeeeee

eeeeee

sshhhhh
hhhhh

hhhhh
hhhhh

hhhhh
hh

xxqqq
qqq

qqq
qqq

�� &&MM
MMM

MMM
MMM

M
(5.22)boo

		

(5.24)a

OO 88qqqqqqqqqqqq

33hhhhhhhhhhhhhhhhhhhhhhhhhhh
// 11 00 00

UU
(5.24)b

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
(5.24)c

kkVVVVVVVVVVVVVVVVVVVVVVVVVVV

ffMMMMMMMMMMMM

OO

qq oo // 11
UU

(5.25)a

llYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

kkVVVVVVVVVVVVVVVVVVVVVVVVVVV

ffNNNNNNNNNNNN
pppp oo //

UU
(5.25)b

Figure 5.4: Dependency graph of Abelian group

As already demonstrated in the previous section, not all the rewriting

(narrowing) sequences are relevant for the finite variant property, so that

we can restrict the dependency graph only to variant-preserving rewriting

(narrowing) sequences.

Definition 38 (Variant-preserving chain) Let R = (Σ, Ax,E) be a

variant-preserving decomposition of an equational theory (Σ, E). A chain of

dependency pairs 〈s1, t1〉〈s2, t2〉 · · · 〈sn, tn〉 of R is a variant-preserving chain

if there is a substitution σ such that σ is →E,Ax-normalized and the following

rewrite sequence s1σ →E,Ax C1[t1]σ →∗E,Ax C1[s2]σ →E,Ax C1[C2[t2]]σ →∗E,Ax
· · · →∗E,Ax C1[C2[· · ·Cn−1[sn]]]σ →E,Ax C1[C2[· · ·Cn−1[Cn[tn]]]]σ obtainable

from the chain 〈s1, t1〉〈s2, t2〉 · · · 〈sn, tn〉 is variant-preserving.

The notions of a cycle, dependency graph, and estimated dependency graph

are easily extended to the variant-preserving case. The following result ap-

proximates the absence of infinite narrowing sequences. We simply approxi-

mate such property by avoiding any cycle. We do not use any of the depen-

dency pair processors of the dependency pair framework (see [12, 64]) and

we do not require any term ordering. Obviously, there may be more specific

techniques based on termination of narrowing for deciding the termination

of variant-preserving narrowing sequences but this is left for future work.

Proposition 3 (Finiteness Check of the VP Narrowing sequences)

Let R = (Σ, Ax,E) be a variant-preserving decomposition of an equational

theory (Σ, E). Let Ax contain only linear, non-collapsing equations. If the

estimated dependency graph does not contain any variant-preserving cycle,

then there are no infinite variant-preserving narrowing sequences.

Proof. We prove this result by contradiction. Assume that the estimated

dependency graph does not contain any variant-preserving cycle but there

153



(5.19)a (5.19)b (5.20)a (5.22)a (5.22)b

(5.24)a (5.24)b (5.24)c (5.25)all ll nn

ll jj

(5.25)b

Figure 5.5: Variant-preserving dependency graph

is an infinite variant-preserving narrowing sequence α : t0 p1,σ1,E,Ax t1 · · ·
 pn,σn,E,Ax tn · · · . From α we can obtain an infinite number of finite variant-

preserving rewrite sequences of the form t0θi →p1,E,Ax t1θi · · · →pi,E,Ax tiθi

with θi = σ1 · · ·σi. For each variant-preserving rewrite sequence t0θi →p1,E,Ax

t1θi · · · →pi,E,Ax tiθi, there is a variant-preserving chain corresponding to

such rewrite sequence. Since the number of dependency pairs is finite, there

is a natural number k such that for the variant-preserving rewrite sequence

t0θk →p1,E,Ax t1θk · · · →pk,E,Ax tkθk, the variant-preserving chain associated

to it is a cycle. Thus, the conclusion follows, because we assume that there

is no variant-preserving cycle. 2

Note that the conditions that the axioms are non-collapsing and linear are

necessary for completeness of the dependency graph, we refer the reader to

[62] for explanations.

Example 29 (AG variant-preserving dependency pair graph) We

can show the variant-preserving dependency graph of Example 27 in Fig-

ure 5.5. One can see in the picture that all the cycles have disappeared, be-

cause they involved non-normalized substitutions, or terms without a variant-

pattern, or could be shortened. Detailed reasons are provided next.

For the dependency pair (5.19)b and its self-loop we need a substitution

σ for which (X ∗ Y )σ =AC (X ′−1 ∗ Y ′−1)σ. But then, e.g., σ = {X 7→
X ′−1, Y 7→ Y ′−1} and the left-hand side of the dependency pair becomes

(X ′−1)−1 ∗ (Y ′−1)−1, which does not have a variant-pattern, as (X ′−1)−1 is

reducible, so the self-loop is not a variant-preserving sequence and thus not

a variant-preserving chain.

For the dependency pairs (5.24)a, i.e., 〈s1, t1〉 = 〈X−1 ∗ Y −1 ∗ Z, (X ∗
Y )−1 ∗ Z〉, and (5.25)a, i.e., 〈s2, t2〉 = 〈(X ′ ∗ Y ′)−1 ∗ Y ′ ∗ Z ′, X ′−1 ∗ Z ′〉 let

us consider both directions. For one direction we have ((X ∗Y )−1 ∗Z)σ =AC

((X ′ ∗Y ′)−1 ∗Y ′ ∗Z ′)σ so for example σ = {Z 7→ Y ′ ∗Z ′, X 7→ X ′, Y 7→ Y ′}.
Then s1σ =AC X

′−1 ∗Y ′−1 ∗Y ′ ∗Z ′ which has a variant-pattern and for which

the rewriting sequence is X ′−1∗Y ′−1∗Y ′∗Z ′ → (X ′∗Y ′)−1∗Y ′∗Z ′ → X ′−1∗Z ′.

154



(5.19)a (5.19)b (5.20)a (5.22)a (5.22)b

(5.24)a (5.24)b (5.24)c (5.25)all ll nn

kk ii

(5.25)b

(5.27)a (5.27)b

OOffMMMMMM

jjVVVVVVVVVVVVVVV

aa ]];;;;;;;;;;;;;

VV

88qqqqqq

44hhhhhhhhhhhhhhh

Figure 5.6: Variant-preserving dependency graph for Diffie-Hellman

Nevertheless, it is not a variant-preserving sequence as there is a shorter

rewriting sequence using rule (5.23), X ′−1 ∗ Y ′−1 ∗ Y ′ ∗ Z ′ → X ′−1 ∗ Z ′, so

there is no variant-preserving chain here.

Similarly for the chain from (5.24)a to (5.25)b as the only difference is in

t2, so that t2σ = X ′−1 but that will be padded with the context of ∗ ([], Z ′)

(where [] is the hole) and so the same shorter rewriting sequence exists.

In the other direction, from (5.25)a to (5.24)a, we have (X ′−1 ∗Z ′)σ =AC

(X−1 ∗ Y −1 ∗ Z)σ so then for example σ = {Z ′ 7→ Y −1Z,X ′ 7→ X} and

s2σ =AC (X ∗ Y ′)−1 ∗ Y ′ ∗ Y −1 ∗ Z which has a variant-pattern and the

rewriting sequence (X ∗Y ′)−1 ∗Y ′ ∗Y −1 ∗Z → X−1 ∗Y −1 ∗Z → (X ∗Y )−1 ∗
Z. The alternative rewriting sequence applying the rules in reverse order is

(X ∗ Y ′)−1 ∗ Y ′ ∗ Y −1 ∗ Z → (X ∗ Y ′ ∗ Y )−1 ∗ Y ′ ∗ Z → (X ∗ Y )−1 ∗ Z which

is not shorter, so this is a variant-preserving sequence and thus we have a

variant-preserving chain.

Let us first introduce a representation of the Diffie-Hellman theory and

then show the VP property for the theories of Abelian groups and Diffie-

Hellman exponentiation, and also the finite variant property for the Diffie-

Hellman theory.

Example 30 (Diffie-Hellman) We get a rewrite theory representing the

Diffie-Hellman theory, called RDH, by extending the theory R∗ from Exam-

ple 27 by adding a new binary symbol exp and the following two rules:

exp(x, 1) → x (5.26)

exp(exp(x, y), z) → exp(x, y ∗ z) (5.27)

We can compute the dependency pairs and the associated graph using the

results we already have from Example 29. Also note, that the rewrite theories

155



R∗ and RDH both have the variant-preserving property, which we will check

in Example 31, respectively Example 32. The following additional dependency

pairs are required:

(5.27)a : 〈exp(exp(x, y), z) , exp(x, y ∗ z)〉
(5.27)b : 〈exp(exp(x, y), z) , y ∗ z〉

As shown in Figure 5.6, for rule (5.27) there are a lot of possibilities to go

from (5.27)b, but the longest possible path has length 2. Let us show that

there is actually a chain for the path from (5.27)b via (5.25)a to (5.19)a.

After substituting as needed for this in the left-hand side of (5.27) we get

exp(exp(X, (U ∗ V )−1), V ∗W−1)→ exp(X, (U ∗ V )−1 ∗ V ∗W−1), let us call

this term t. Then from there we have t→ exp(X,U−1 ∗W−1)→ exp(X, (U ∗
W )−1) and alternatively t→ exp(X, (U ∗V ∗W )−1∗V )→ exp(X, (U ∗W )−1)

which is not shorter. So this is really a variant-preserving chain and the

longest chain from (5.27)b is length 2.

We show VP for our Abelian group representation next.

Example 31 Let us check variant-preservingness for R∗ by using Theo-

rem 16. For rule (5.16) and any other rule there is no variant-pattern for

lθ where θ substitutes another left-hand side into X. The reason is that the

constant 1 needs to stay isolated, since otherwise a rewrite is possible, and so

the left-hand side that was inserted stays together and is reducible. As rule

(5.17) does not have any variable, the property holds trivially.

For all following rules let us note that instantiating a variable that is

a subterm of an inverse operator −1 with a left-hand side of another rule,

immediately results in a term that has no variant-pattern as that left-hand

side stays together underneath. Thus the rules (5.18)–(5.22) do not need

to be considered as all variables appear at least once underneath an inverse

operator.

In this vein for rule (5.23) we only need to consider the terms created when

instantiating Y . Only combination with (5.18),(5.20), (5.23), and (5.25)

results in a term that has a variant-pattern. Let us show for example (5.23)

with (5.25) (renamed to primed variables). The resulting term is X ∗X−1 ∗
(X ′ ∗ Y ′)−1 ∗ Y ′ ∗ Z ′ which can be reduced by rule (5.24) (renamed to doubly

primed variables) with substitution {X ′′ 7→ X, Y ′′ 7→ X ′∗Y ′, Z ′′ 7→ X∗Y ′∗Z ′}
which is normalized.

156



For rule (5.24) the only useful (i.e., with a chance of having a variant-

pattern) instantiations are for Z, but also as there are already two appear-

ances of a term headed by the inverse only left-hand sides with no inverse

have a chance at having a variant-pattern. That only leaves rule (5.16) which

results in term X−1 ∗Y −1 ∗X ′ ∗1 which also does not have a variant-pattern.

Finally, for rule (5.25) we only need to instantiate the variable Z. There

are variant-patterns for the combinations with (5.18), (5.20), (5.23), and

(5.25), let us just show the last of these combinations, (5.25) with itself. The

resulting term is (X ∗ Y )−1 ∗ Y ∗ (X ′ ∗ Y ′)−1 ∗ Y ′ ∗ Z ′, which has a variant-

pattern but also can rewrite with rule (5.24) (renamed with two primes) with

the normalized substitution {X ′′ 7→ X ∗ Y, Y ′′ 7→ X ′ ∗ Y ′, Z ′′ 7→ Y ∗ Y ′ ∗ Z ′}.
Therefore, R∗ has the variant-preserving property.

Based on VP for Abelian groups we can check VP for Diffie-Hellman. It

also turns out that Diffie-Hellman has the finite-variant property.

Example 32 Variant-preservingness of the Diffie-Hellman theory RDH can

be shown using Theorem 16 based upon the variant-preservingness of R∗
shown in Example 31. Let us just observe that RDH is obtained by just adding

a new symbol exp and rules for it. Putting this into any variable of any of

the prior rules results in a term that has no variant-pattern. The other way

around, any left-hand side put into any of the variables of the left-hand sides

of one of the two new rules results in a term that has no variant-pattern. So

RDH has the variant-preserving property, too.

The proof of our final result for this section is trivial: since if there are no

cycles in the estimated dependency graph, then we know for sure that there

is no infinite variant-preserving rewrite sequence.

Theorem 17 (Approximation for the finite variant property) Let

R = (Σ, Ax,E) be a variant-preserving decomposition of an equational the-

ory (Σ, E) such that Ax contains only linear, non-collapsing equations. If the

estimated dependency graph does not contain any variant-preserving cycle,

then R has the finite variant property.

Proof. By Proposition 3 and Theorem 15. 2

157



5.6.3 Disproving the Finite Variant Property

If there are infinite variant-preserving narrowing sequences, we are done,

because the finite variant property does not hold by Theorem 15. We can

give a simple sufficient condition, a consequence of Theorem 15.

Theorem 18 (Non-termination of narrowing) Let R = (Σ, Ax,E) be

a variant-preserving decomposition of an equational theory (Σ, E). Let Ax

contain only linear, non-collapsing equations. If the estimated dependency

graph does contain a variant-preserving chain 〈s, t〉〈s, t〉 such that s vAx t,
called a self-cycle, and the Cap and Ren procedures were not necessary

for obtaining term t, then there is an infinite variant-preserving narrowing

sequence starting from term s.

Proof. The estimated dependency graph contains the chain 〈s, t〉〈s, t〉 for

the dependency pair 〈s, t〉. The dependency pair 〈s, t〉 comes from a rule

s→ C[t]p. Let σ be such that s =Ax tσ. Since the Cap and Ren procedures

have not been applied to term t, we have the infinite narrowing sequence

s Λ,id,E,AxC[t]p p,σ,E,AxC[C ′[t′]p]p p.p,σ′,E,AxC[C ′[C ′′[t′′]p]p]p · · · where C ′

and C ′′ are properly renamed versions of C, t′ and t′′ are properly renamed

versions of t, and σ′ is a properly renamed version of σ. 2

Example 33 (ACUNh) [32] Let us present the ACU example with nilpo-

tence and homomorphism as discussed by Comon and Delaune.4 This is

RACUNh, with + AC, which has the variant-preserving property:

X + 0 → X (5.28)

X +X → 0 (5.29)

X +X + Y → Y (5.30)

h(0) → 0 (5.31)

h(X + Y ) → h(X) + h(Y ) (5.32)

For the last rule we get three dependency pairs:

(5.32)a : 〈h(x+ y) , h(x) + h(y)〉
(5.32)b : 〈h(x+ y) , h(x)〉
(5.32)c : 〈h(x+ y) , h(y)〉

4There is another, alternative term rewriting system representing this theory, which
suffers from the same problems.

158



It is easy to see that there are self-cycles in (5.32)b and (5.32)c using the

substitution x 7→ x1 + z1, which also allows going back and forth between

them. This gives rise to the following graph:

(5.32)a (5.32)b //
77

oo (5.32)c
gg

oo
ss

By Theorem 15, this theory does not have the finite variant property, as also

proved in a different way in [32].

5.7 Variant-based Equational Unification

The intimate connection between variants and E-unification is then as follows.

Definition 39 For R = (Σ, Ax,E) with poset of sorts (S,≤) being a decom-

position of an equational theory (Σ, E), we extend (Σ, Ax,E) and (S,≤) to

(Σ̂, Ax, Ê) and (Ŝ,≤) as follows:

1. we add a new sort Truth to Ŝ, not related to any sort in Σ,

2. we add a constant operator tt of sort Truth to Σ̂,

3. for each top sort of a connected component [s], we add an operator eq

: [s] × [s] → Truth to Σ̂, and

4. for each top sort [s], we add a variable X:[s] and an extra rule

eq(X:[s], X:[s])→ tt to Ê.

Then, given any two Σ-terms t, t′, if θ is an E-unifier of t and t′, then the

E,Ax-canonical forms of tθ and t′θ must be Ax-equal and therefore the pair

(tt, θ) must be a variant of the term eq(t, t′). Furthermore, if the term

eq(t, t′) has a finite set of most general variants, then we are guaranteed that

the set of most general E-unifiers of t and t′ is finite.

Corollary 7 Let R = (Σ, Ax,E) with poset of sorts (S,≤) be a finite vari-

ant decomposition of an equational theory (Σ, E). The equational theory

(Σ̂, Ax, Ê) with poset of sorts (Ŝ,≤) of Definition 39 is a finite decompo-

sition.

159



Proof. Given a term eq(t, t′), for any variant (u, σ) ∈ [[eq(t, t′)]]E,Ax, either

u = tt or u = eq(v, v′) such that (v, φ) ∈ [[t]]E,Ax and (v′, φ′) ∈ [[t′]]E,Ax for

some substitutions φ and φ′. Since [[t]]E,Ax and [[t′]]E,Ax are finite, we conclude

that [[eq(t, t′)]]E,Ax is finite. 2

Let us make explicit the relation between variants and E-unification.

Given a decomposition (Σ, Ax,E) of an equational theory, two Σ-terms t1

and t2 such that W∩ = Var(t1) ∩ Var(t2) and W∪ = Var(t1) ∪ Var(t2),

and two sets V1 and V2 of variants of t1 and t2, respectively, we define

V1 ∩ V2 = {(u1σ, θ1σ ∪ θ2σ ∪ σ) | (u1, θ1) ∈ V1 ∧ (u2, θ2) ∈ V2 ∧ ∃σ : σ ∈
CSUW∪

Ax (u1 = u2) ∧ (θ1σ)|W∩ =Ax (θ2σ)|W∩}.

Proposition 4 (Variant-based Unification) Let R = (Σ, Ax,E) be a

decomposition of an equational theory (Σ, E). Let t1, t2 be two Σ-terms. Then,

ρ is an E-unifier of t1 and t2 iff ∃(t′, ρ) ∈ [[t1]]?E,Ax ∩ [[t2]]?E,Ax.

Proof. (⇒) If ρ is an E-unifier of t1 and t2, then (t1ρ)↓E,Ax =Ax (t2ρ)↓E,Ax.

Let t′1 = (t1ρ)↓E,Ax and t′2 = (t2ρ)↓E,Ax. We also have that (t′1, ρ) ∈ [[t1]]?E,Ax,

(t′2, ρ) ∈ [[t1]]?E,Ax, (t′1, ρ) ∈ [[t2]]?E,Ax, and (t′2, ρ) ∈ [[t2]]?E,Ax.

(⇐) If ∃(t′, ρ) ∈ [[t1]]?E,Ax ∩ [[t2]]?E,Ax, then t′ =Ax (t1ρ)↓E,Ax =Ax (t2ρ)↓E,Ax
and clearly ρ is an E-unifier of t1 and t2. 2

Proposition 5 (Minimal and Complete E-unification) Let R =

(Σ, Ax,E) with poset of sorts (S,≤) be a decomposition of an equational the-

ory (Σ, E). Let t, t′ be two Σ-terms. Then, U = {θ | (tt, θ) ∈ [[eq(t, t′)]]Ê,Ax}
is a minimal and complete set of E-unifiers for t = t′, where eq and tt are

new symbols as defined in Definition 39 and Ê = E ∪ {eq(X:[s], X:[s]) →
tt | s ∈ S}.

Proof. We have to prove that for each E-unifier ρ of t and t′, there is an

E-unifier σ in U such that ρ vE σ. First, it is clear by definition of eq and tt

that Ê satisfies properties (1)–(4) (see Section 5.1). Let U∗ = {θ | (tt, θ) ∈
[[eq(t, t′)]]?Ê,Ax}. If ρ is an E-unifier of t and t′, then ρ ∈ U∗, since for t̄ =

(tρ)↓E,Ax and t̄′ = (t′ρ)↓E,Ax, we have that t̄ =Ax t̄′ and eq(t̄, t̄′) →Ê,Ax tt.

If ρ ∈ U∗, then ρ is an E-unifier of t and t′, since eq(tρ, t′ρ) →∗
Ê,Ax

tt

and, by properties (1)–(4), we have that there are t̄, t̄′ s.t. t̄ = (tρ)↓E,Ax,

t̄′ = (t′ρ)↓E,Ax, and the following rewrite step exists eq(t̄, t̄′)→Ê,Ax tt.

160



Now, completeness means that for each E-unifier ρ of t and t′, there is

an E-unifier σ in U such that ρ|t,t′ vE σ|t,t′; and minimality means that for

each E-unifier σ in U there is no σ′ in U such that σ|t,t′ vAx σ′|t,t′. Finally,

by completeness and minimality of [[eq(t, t′)]]Ê,Ax w.r.t. [[eq(t, t′)]]?Ê,Ax, we

conclude completeness and minimality of U w.r.t U∗. 2

Finally, it is clear that when we consider a finite variant decomposition,

we obtain a decidable, finitary unification algorithm.

Corollary 8 (Finitary E-unification) LetR = (Σ, Ax,E) be a finite vari-

ant decomposition of an equational theory (Σ, E). Then, for any two given

terms t, t′, U = {θ | (tt, θ) ∈ [[eq(t, t′)]]Ê,Ax} is a finite, minimal, and com-

plete set of E-unifiers for t = t′, where Ê, eq, and tt are defined in Defini-

tion 39.

Note that the opposite does not hold: given two terms t, t′ that have a

finite, minimal, and complete set of E-unifiers, the equational theory R =

(Σ, E) may not have a finite variant decomposition (Σ, Ax,E). An example

is the unification under homomorphism (or one-side distributivity), where

there is a finite number of unifiers of two terms but the theory does not

satisfy the finite variant property (see Example 33); the key reason for this is

that the term eq(t, t′) may have an infinite number of variants, even though

there is only a finite set of most general variants of the form (tt, θ).

Once we have clarified the intimate relation between variants and equa-

tional unification, we can consider how to compute a complete set of variants

of a term using the variant minimality of VN	R. The minimality property of

Definition 14 motivates the following corollary.

Corollary 9 Let R = (Σ, Ax,E) be a decomposition of an equational theory

(Σ, E). For any two terms t, t′ with the same top sort, the set S = {θ |
(tt, θ) ∈ [[eq(t, t′)]]

VN	
R

Ê,Ax
} is a complete set of E-unifiers for t = t′, where

Ê, eq, and tt are defined in Definition 39. If, in addition, R is a finite

decomposition, then the set S is a finite set of E-unifiers for t = t′.

5.8 Applications

A first obvious application is in the area of unification algorithms. The key

distinction is one between dedicated algorithms for a given theory T , for

161



which a special-purpose algorithm exists, and generic algorithms such as

folding variant narrowing, which can be applied to a wide range of theories

not having a dedicated algorithm. The tradeoff is one of flexibility versus

performance: a dedicated unification algorithm for a given theory T uses in-

timate knowledge of the theory’s details and is typically much more efficient;

but a special-purpose algorithm has to be developed for each such T , and

combinations, though possible, are computationally expensive. By contrast,

variant-based unification, being a generic method, is much more flexible and,

as already mentioned and illustrated by several of our examples, if T and

T ′ enjoy FV, T ∪ T ′ often does so as well, so that obtaining unification

algorithms for combined theories is typically easy and does not require an

explicit combination infrastructure. Of course, both methods should be used

together: dedicated algorithms should be used whenever possible; variant-

based unification can then be used to extend the range of theories that can

be treated as follows: as soon as the theory Ax has a dedicated unification

algorithm under minimal assumptions on Ax, we can automatically derive a

unification algorithm for any theory T = E ∪ Ax such that E is confluent,

terminating, sort-decreasing and coherent modulo Ax, and such an algorithm

is guaranteed to be finitary if T enjoys FV.

This is exactly the approach that has been followed for analyzing cryp-

tographic protocols modulo algebraic properties in the Maude-NPA tool

[48, 113]. Such protocols can be modeled as rewrite theories P = (Σ, E,R),

where the algebraic properties of the cryptographic functions are specified by

equations E, and the protocol’s transition rules are specified by the rewrite

rules R. If E can be decomposed as G ∪ Ax, where G is confluent, termi-

nating, sort-decreasing and coherent modulo Ax and Ax has a finitary uni-

fication algorithm, we can perform symbolic reachability analysis on P by

narrowing its symbolic states with the transition rules R modulo E, where

E-unification can be carried out by folding variant narrowing with G mod-

ulo Ax and therefore does not need a dedicated E-unification algorithm. In

this way, the Maude-NPA has been able to analyze a substantial collection

of cryptographic protocols modulo their algebraic properties, see [48]. What

makes the application of folding variant narrowing to cryptographic proto-

col verification interesting is its flexibility for accepting different equational

theories specified by the user and its order-sorted nature, which is essential

for realistic protocol specification. The following paragraph from the conclu-

162



sions of a survey of algebraic properties used in cryptographic protocols [34]

summarizes the actual situation in protocol verification:

In this survey, we have identified many algebraic properties that

are particularly relevant for the analysis of cryptographic proto-

cols. ... Many recent results consider some algebraic properties.

However, the existing results presented in this survey have two

main weaknesses. Firstly, they are mostly theoretical: very few

practical implementations enable to automatically verify proto-

cols with algebraic properties. Secondly, in most of the cases,

each paper develops an ad hoc decision procedure for a particu-

lar property.

Besides being the first practical narrowing strategy we are aware of for

narrowing modulo axioms, the usefulness of folding variant narrowing goes

way beyond the case of providing finitary unification algorithms for FV the-

ories, such as those used in the Maude-NPA tool to analyze cryptographic

protocols, and even beyond the case of providing a complete unification algo-

rithm for equational theories modulo axioms. As demonstrated by its recent

applications to termination algorithms modulo axioms in [42], and to al-

gorithms for checking confluence and coherence of rewrite theories modulo

axioms, such as those used in the most recent Maude CRC and ChC tools

[44], computing the E∪Ax-variants of a term may be just as important as

computing E∪Ax-unifiers. In particular, even for theories such as the theory

of associativity, which lacks a finitary unification algorithm and a fortiori

cannot be FV, the variants of a term (particularly in an order-sorted setting,

and for terms typically used in left-hand sides of rules) can be finite quite of-

ten in practice and can provide a method to prove termination, and to check

the local confluence and the coherence of rewrite rules, modulo associativity.

The key idea of why variant narrowing is important for termination, con-

fluence, and coherence proofs, as demonstrated in [42] and in [44], is the fol-

lowing. Suppose that R ∪ Ax is a collection of rewrite rules modulo axioms

Ax for which we want to prove, say, termination, or confluence, or coherence

with some equations E (see [44] for an explanation of the coherence case).

We may not have any tools checking such properties that can work modulo

the given set of axioms Ax. For example, we are not aware of any termi-

nation tools that can handle termination modulo the commonly occurring

163



theory ACU of associativity, commutativity and identity. What can we do?

We can decompose Ax as a disjoint union E ∪ Ax′, where E is confluent,

terminating, sort-decreasing and coherent modulo Ax′, and where we have

methods to prove, e.g., termination or confluence modulo Ax′. For example,

ACU decomposes in this way as U ∪ AC and enjoys FV. As shown in [42],

we can transform R∪Ax into a semantically equivalent5 theory R̂∪E ∪Ax′,
where now the set of rules is R̂ ∪ E, modulo the much simpler axioms Ax,

where R̂ specializes each rule in R to the family of variants of their left-hand

sides. If E ∪Ax′ has the finite variant property, we are sure that R̂ will be a

finite set; but in practice R̂ can often be finite without the FV assumption.

For example, Ax can be the theory A of associativity, for which unification

is not even finitary. We can view A as a rule and decompose it as A ∪ ∅. In

an order-sorted setting, it turns out that many theories R̂ ∪ A of practical

interest can be decomposed as (R̂ ∪ A) ∪ ∅ with R̂ finite, even though we

know a priori that this is not possible in general, since A is not FV and does

not even have a finitary unification algorithm. For example, we can often

prove confluence modulo associativity of an equational specification in this

way, while the usual approach to generate critical pairs may not be feasible

because of the potentially infinite number of such pairs modulo A.

5.9 Related Work

Narrowing is a fundamental rewriting technique useful for many purposes,

including equational unification and equational theorem proving [74], combi-

nations of functional and logic programming [65, 69, 95], partial evaluation

[4], symbolic reachability analysis of rewrite theories understood as transition

systems [91], and symbolic model checking [51].

It is known that narrowing modulo axioms provides a complete unification

algorithm [78], using full narrowing, which is hopelessly ineffient. The good

completeness properties for standard narrowing extend naturally to similar

completeness properties for narrowing modulo axioms. For effective strate-

gies, like the basic narrowing strategy [74], it turns out that it is incomplete

even modulo associativity-commutativity already [32], assuming the standard

5This semantic equivalence is very strong: that the original theory will be, e.g., termi-
nating, confluent, and so on modulo Ax iff the transformed theory is so modulo Ax′.

164



definition of basic narrowing given in [73] is extended in a straightforward

way to the modulo case.

With an empty set of axioms (the free case), basic narrowing is complete

for unification in the sense of lifting all innermost rewriting sequences into

basic narrowing sequences (see [94]). There are works such as [74, 7], which

investigate conditions under which basic narrowing terminates, as well. In-

deed, except for [78, 123], we are not aware of any studies about narrowing

strategies in the modulo case. Furthermore, as work in [32, 123] shows, nar-

rowing modulo axioms such as associativity-commutativity (AC) can very

easily lead to non-terminating behavior.

The dependency pairs method [12] is a well-known technique for proving

termination of rewriting (modulo axioms). It is extended to narrowing in [5],

see [99] for termination of narrowing using the dependency pair technique.

Termination of narrowing is a much harder problem than that of termina-

tion of rewriting [6] indeed. The AProVE tool [63] is a way to generate

dependency pairs, based on [12, 62].

165



CHAPTER 6

PROTOCOL ANALYSIS MODULO
COMBINATION OF THEORIES: A CASE

STUDY IN MAUDE-NPA

This chapter is based on [113] and is joint work with Santiago Escobar,

Catherine Meadows and José Meseguer. There is a growing interest in formal

methods and tools to analyze cryptographic protocols modulo algebraic prop-

erties of their underlying cryptographic functions. It is well-known that an

intruder who uses algebraic equivalences of such functions can mount attacks

that would be impossible if the cryptographic functions did not satisfy such

equivalences. In practice, however, protocols use a collection of well-known

functions, whose algebraic properties can naturally be grouped together as a

union of theories E1∪ . . .∪En. Reasoning symbolically modulo the algebraic

properties E1∪ . . .∪En requires performing (E1∪ . . .∪En)-unification. How-

ever, even if a unification algorithm for each individual Ei is available, this

requires combining the existing algorithms by methods that are highly non-

deterministic and have high computational cost. In this chapter we present

an alternative method to obtain unification algorithms for combined theories

based on variant narrowing. Although variant narrowing is less efficient at

the level of a single theory Ei, it does not use any costly combination method.

Furthermore, it does not require that each Ei has a dedicated unification al-

gorithm in a tool implementation. We illustrate the use of this method in

the Maude-NPA tool by means of several protocols, including a well-known

protocol requiring the combination of three distinct equational theories.

In recent years there has been growing interest in the formal analysis

of protocols in which the cryptographic algorithms satisfy different algebraic

properties [27, 33, 88, 48]. Applications such as electronic voting, digital cash,

anonymous communication, and even key distribution, all can profit from

the use of such cryptosystems. Thus, a number of tools and algorithms have

been developed that can analyze protocols that make use of these specialized

cryptosystems [88, 85, 17, 11, 36].

Less attention has been paid to combinations of algebraic properties.

166



However, protocols often make use of more than one type of cryptosystem.

For example, the Internet Key Exchange protocol [72] makes use of Diffie-

Hellman exponentiation (for exchange of master keys), public and private

key cryptography (for authentication of master keys), shared key cryptogra-

phy (for exchange of session keys), and exclusive-or (used in the generation

of master keys). All of these functions satisfy different equational theories.

Thus it is important to understand the behavior of algebraic properties in

concert as well as separately. This is especially the case for protocol anal-

ysis systems based on unification, where the problem of combining unifica-

tion algorithms [13, 114] for different theories is known to be highly non-

deterministic and complex, even when efficient unification algorithms exist

for the individual theories, and even when the theories are disjoint (that is,

share no common symbols).

The Maude-NPA protocol analysis tool, which relies on unification to

perform backwards reachability analysis from insecure states, makes use of

two different techniques to handle the combination problem. One is to use

a general-purpose approach to unification called variant narrowing [56] (see

also Chapter 5), which, although not as efficient as special purpose unifica-

tion algorithms, can be applied to a broad class of theories that satisfy the

finite variant property [32] (see Section 5.5). A second technique, applicable

to special purpose algorithms or to theories that do not satisfy the finite

variant property, uses a more general framework for combining unification

algorithms.

One advantage of using variant narrowing is that there are well-known

methods and tools for checking that a combination of theories has the finite

variant property, including checking its local confluence and termination, and

also its satisfaction of the finite variant property itself [52] (see Section 5.6).

Furthermore, under appropriate assumptions some of these checks can be

made modularly (see, e.g., [100] for a survey of modular confluence and ter-

mination proof methods). This makes variant narrowing easily applicable

for unification combination and very suitable for experimentation with dif-

ferent theories. Later on, when the theory is better understood, it may be

worth the effort to invest the time to implement and integrate more efficient

special-purpose algorithms.

In this chapter we describe several case studies involving the use of variant

narrowing to apply Maude-NPA to the analysis of several protocols involving

167



exclusive-or and other theories; including our running example protocol that

involves three theories: (i) an associative-commutative theory satisfied by

symbols used in state construction, (ii) a cancellation theory for public key

encryption and decryption, and (iii) the equational theory of the exclusive-or

operator. This theory combination is illustrated in the analysis of a version

of the Needham-Schroeder-Lowe protocol [85], denoted NSL⊕, in which one

of the concatenation operators is replaced by an exclusive-or [25].

In one of the other example protocols (Wired Equivalent Privacy pro-

tocol [1]), we find an attack with Maude-NPA. Then, we look at another

version of the protocol which is supposed to fix that attack, which Maude-

NPA indeed proves to be secure.

The rest of this chapter is organized as follows. In Section 6.1 we give

an overview of Maude-NPA. In Section 6.2 we recall variant narrowing and

explain how it is used in Maude-NPA, referring to Chapter 5 for some results.

In Section 6.3 we describe our use of Maude-NPA on the three examples: (i)

the NSL⊕ protocol (in Section 6.3.1), (ii) a key exchange protocol based on

exclusive-or and a central server (see Section 6.3.2) by Tatebayashi, Mat-

suzaki and Newman [118], and (iii) the Wired Equivalent Privacy protocol

(WEP) standard by IEEE [1] using exclusive-or and other theories (see Sec-

tion 6.3.3). Additionally, in Section 6.3.4 we look at a version of WEP which

fixes the attack present in the original version, and prove the security of the

revised protocol with Maude-NPA. In Section 6.4 we discuss related work,

and in Section 6.5 we present some additional discussion.

6.1 Protocol Specification and Analysis in Maude-NPA

Given a protocol P , we first explain how its states are modeled algebraically.

The key idea is to model such states as elements of an initial algebra TΣP/EP ,

where ΣP is the signature defining the sorts and function symbols for the

cryptographic functions and for all the state constructor symbols and EP is a

set of equations specifying the algebraic properties of the cryptographic func-

tions and the state constructors. Therefore, a state is an EP-equivalence class

[t] ∈ TΣP/EP with t a ground ΣP-term. However, since the number of states

TΣP/EP is in general infinite, rather than exploring concrete protocol states

[t] ∈ TΣP/EP we explore symbolic state patterns [t(x1, . . . , xn)] ∈ TΣP/EP (X)

168



on the free (ΣP , EP)-algebra over a set of variables X. In this way, a state

pattern [t(x1, . . . , xn)] represents not a single concrete state but a possibly in-

finite set of such states, namely all the instances of the pattern [t(x1, . . . , xn)]

where the variables x1, . . . , xn have been instantiated by concrete ground

terms.

Let us introduce a motivating example that we will use to illustrate our

approach based on exclusive–or. We use an exclusive–or version borrowed

from [25] of the Needham-Schroeder-Lowe protocol [85] which we denote

NSL⊕. In our analysis we use the protocol based on public key encryp-

tion, i.e., operators pk and sk satisfying the equations pk(P, sk(P,M)) =

M and sk(P, pk(P,M)) = M and the messages are put together using con-

catenation and exclusive–or. Note that we use a representation of public-key

encryption in which only principal P can compute sk(P,X) and everyone

can compute pk(P,X). For exclusive–or we have the associativity and com-

mutativity (AC) axioms for ⊕, plus the equations1 X ⊕ 0 = X, X ⊕ X =

0, X ⊕X ⊕ Y = Y.

1. A→ B : pk(B,NA;A)

A sends to B, encrypted under B’s public key, a communication request

containing a nonceNA that has been generated byA, concatenated with

its name.

2. B → A : pk(A,NA;B ⊕NB)

B answers with a message encrypted under A’s public key, containing

the nonce of A, concatenated with the exclusive–or combination of a

new nonce created by B and its name.

3. A→ B : pk(B,NB)

A responds with B’s nonce encrypted under B’s public key.

A and B agree that they both know NA and NB and no one else does.

In the Maude-NPA [47, 48], a state in the protocol execution is a term t

of sort state, t ∈ TΣP/EP (X)state. A state is a multiset built by an associative

and commutative union operator & . Each element in the multiset can

be a strand or the intruder knowledge at that state (intruder knowledge is

1The third equation follows from the first two. It is needed for coherence modulo AC.

169



wrapped by { }). A strand [58] represents the sequence of messages sent and

received by a principal executing the protocol and is indicated by a sequence

of messages [msg−1 , msg
+
2 , msg

−
3 , . . . , msg

−
k−1, msg

+
k ] where each msgi is

a term of sort Msg (i.e., msgi ∈ TΣP (X)Msg), msg
− represents an input

message, and msg+ represents an output message. In Maude-NPA, strands

evolve over time and thus we use the symbol | to divide past and future in a

strand, i.e., [msg±1 , . . . ,msg
±
j−1 | msg±j ,msg±j+1, . . . ,msg

±
k ] where msg±1 , . . . ,

msg±j−1 are the past messages, and msg±j ,msg
±
j+1, . . . ,msg

±
k are the future

messages (msg±j is the immediate future message). The intruder knowledge

is represented as a multiset of facts unioned together with an associative and

commutativity union operator _,_. There are two kinds of intruder facts:

positive knowledge facts (the intruder knows m, i.e., m∈I), and negative

knowledge facts (the intruder does not yet know m but will know it in a

future state, i.e., m/∈I), where m is a message expression. Facts of the form

m/∈I make sense in a backwards analysis, since one state can have m∈I and

a prior state can have m/∈I.

The strands associated to the three protocol steps above are given next.

There are two strands, one for each principal in the protocol. Note that the

first message passing A → B : pk(B,NA;A) is represented by a message in

Alice’s strand sending (pk(B, n(A, r);A))+, together with another message in

Bob’s strand that receives (pk(B,N ;A))−. When a principal cannot observe

the contents of a concrete part of a received message (e.g., because a key is

necessary to look inside), we use a generic variable for such part of the mes-

sage in the strand (as with variable N of sort Nonce above, and similarly for

X, Y below). We encourage the reader to compare the protocol in strand no-

tation to the above presentation of the protocol. We also omit the initial and

final nil in strands, which are needed in the tool but clutter the presentation.

- (Alice) :: r :: [(pk(B, n(A, r);A))+, (pk(A, n(A, r);B ⊕ Y ))−, (pk(B, Y ))+]

- (Bob) :: r′ :: [(pk(B,X;A))−, (pk(A,X;B ⊕ n(B, r′)))+, (pk(B, n(B, r′)))−]

Note that r, r′ are used for nonce generation (they are special variables han-

dled as unique constants in order to obtain an infinite number of available

constants).

There are also strands for initial knowledge and actions of the intruder,

such as concatenation, deconcatenation, encryption, decryption, etc. Con-

170



catenation by the intruder is described by the strand [(X)−, (Y )−, (X;Y )+],

for example. We will show the full list of intruder capabilities in Section 6.3.1.

Our protocol analysis methodology is then based on the idea of back-

ward reachability analysis, where we begin with one or more state patterns

corresponding to attack states, and want to prove or disprove that they are

unreachable from the set of initial protocol states. In order to perform such

a reachability analysis we must describe how states change as a consequence

of principals performing protocol steps and of intruder actions. This can be

done by describing such state changes by means of a set RP of rewrite rules,

so that the rewrite theory (ΣP , EP , RP) characterizes the behavior of protocol

P modulo the equations EP . The following rewrite rules describe the general

state transitions, where each state transition implies moving rightwards the

vertical bar of one strand:

SS & [L | M−, L′] & {M∈I, IK} → SS & [L,M− | L′] & {IK}
SS & [L | M+, L′] & {IK} → SS & [L,M+ | L′] & {IK}
SS & [L | M+, L′] & {M /∈I, IK} → SS & [L,M+ | L′] & {M∈I, IK}

variables L,L′ denote lists of input and output messages (m+,m−) within a

strand, IK denotes a set of intruder facts (m∈I,m/∈I), and SS denotes a set

of strands. An unbounded number of sessions is handled by another rewrite

rule introducing an extra strand [m±1 , . . . ,m
±
j−1 | m+

j ,msg
±
j+1, . . . ,m

±
k ] for an

intruder knowledge fact of the form mj∈I. See [47] for further information.

The way to analyze backwards reachability is then relatively easy, namely

to run the protocol “in reverse.” This can be achieved by using the set of

rules R−1
P , where v −→ u is in R−1

P iff u −→ v is in RP . Reachability analysis

can be performed symbolically, not on concrete states but on symbolic state

patterns [t(x1, . . . , xn)] by means of narrowing modulo EP (see Definition 10

in Section 5.3, and [78, 91]).

EP-unification precisely models all the different ways in which an intruder

could exploit the algebraic properties EP of P to break the protocol; there-

fore, if an initial state can be shown unreachable by backwards reachability

analysis modulo EP from an attack state pattern, this ensures that, even if

the intruder uses the algebraic properties EP , the attack cannot be mounted.

Therefore, efficient support for EP-unification is a crucial feature of symbolic

reachability analysis of protocols modulo their algebraic properties EP .

171



6.2 A Unification Algorithm for XOR ∪ pk-sk ∪ AC

In general, combining unification algorithms for a theory E = E1∪E2∪. . .∪En
is computationally quite expensive, and typically assumes that the symbols in

Ei and Ej are pairwise disjoint for each i 6= j. This is due to the substantial

amount of non–determinism involved in the inference systems supporting

such combinations (see [13]). In our NSL⊕ example, E = E1∪E2∪E3, where

E1 is the XOR theory, E2 is the theory pk-sk given by the two public key

encryption equations pk(K, sk(K,M)) = M and sk(K, pk(K,M)) = M , and

E3 is the AC theory for each of the state constructors _,_ and & , explained

in Section 6.1. To further complicate the matter, we need to combine not just

untyped unification algorithms, but typed, and more precisely order-sorted

ones.

Fortunately, the variant–narrowing–based approach that we use in this

chapter avoids all these difficulties by obtaining the (XOR ∪ pk-sk ∪ AC)-

unification algorithm as an instance of the variant narrowing methodology

supported by Maude-NPA. The point is that if an equational theory E has

the finite variant property [32], then a finitary E-unification algorithm can be

obtained by variant narrowing [56, 54], as already explained in Section 5.4.1.

In our case, the equations in the theory pk-sk are confluent and terminating

and, furthermore, have the finite variant property. Likewise, the equations in

the XOR theory presented in Section 6.1 are confluent, terminating and co-

herent modulo the AC axioms of ⊕ and also have the finite variant property.

Finally, the theory of AC for the state-building constructors _,_ and & is

of course finitary and can be viewed as a trivial case of a theory with the

finite variant property (decomposed with no rules and only axioms). Note

that all these three equational theories are disjoint, i.e., they do not share

any symbols. The good news is that the following disjoint union theory

XOR ∪ pk-sk ∪ AC with ΣNSL⊕ being the entire (order-sorted) signature

of our NSL⊕ protocol example is also confluent, terminating and coherent

modulo the AC axioms2, and satisfies the finite variant property:

2All these conditions are easily checkable. Indeed, coherence modulo the combined
AC axioms is immediate, and we can use standard methods and tools to check the local
confluence and termination of the combined theory; similarly, the method described in [52]
can be used to check the finite variant property of the combined theory. Alternatively, one
can use modular methods to check that a combined theory satisfies all these properties
under certain assumptions: see [100] for a good survey of modularity results for confluence
and termination. Likewise, the finite variant property can also be checked modularly under

172



1. Rules :

• pk(K, sk(K,M)) = M , sk(K, pk(K,M)) = M ,

• X ⊕ 0 = X, X ⊕X = 0, X ⊕X ⊕ Y = Y ,

2. Axioms : AC for ⊕, AC for _,_ and AC for &

Therefore, Maude-NPA can analyze the NSL⊕ protocol using variant nar-

rowing. In the following we will recall the notions of Chapter 5 that are

crucial for the use of variant narrowing in this chapter, to allow the reader

to read this chapter without having to have read the previous chapter in full.

Let us now motivate the key notions in an intuitive fashion. All definitions

linked below are from Chapter 5.

• The decomposition (Σ, Ax,E) of an equational theory (Σ, E) is such

that E = E ∪ Ax, with a number of extra conditions to assure that

the decomposition behaves like the original equational theory when

executed, see Definition 2 for details.

• An E,Ax-variant of a term t is a pair (t′, σ) such that t′ is the E,Ax-

canonical form of tσ.

• The variant semantics of a term, [[t]]?E,Ax, is the set of all normalized

variants of t, see Definition 5.

• For comparing variants, we write (t1, θ1) vE,Ax (t2, θ2) to denote that

variant (t2, θ2) is more general than variant (t1, θ1).

• We call [[t]]E,Ax the most general and complete variant semantics of t

when: (i) it is a subset of the variant semantics [[t]]?E,Ax from above, and

(ii) every possible variant of t is an instance of at least one element of

[[t]]E,Ax, see Definition 9 for all the details.

• Note that, by definition, all the substitutions in [[t]]E,Ax are E,Ax-

normalized. Moreover, [[t]]E,Ax is unique up to equivalence modulo Ax

and provides a very succinct description of [[t]]?E,Ax.

• We get a minimal and complete E-unification procedure by intersecting

the variant semantics of the terms in question, the details are given in

Proposition 5.

appropriate assumptions, but a discussion of this topic is beyond the scope of this chapter.

173



• The finite variant property for an equational theory decomposed as

E ∪ Ax means that for each term t, [[t]]E,Ax is a finite set. See details

in Section 5.5

• For a theory with the finite variant property we have a finitary E-

unification algorithm (giving a finite, minimal, and complete set of

unifiers modulo the theory), by the intersection of the most general

and complete variant semantics of the terms of interest. This is shown

in detail in Corollary 8.

Let us now look at an example using these notions, in particular that of

a variant semantics [[t]]?E,Ax.

Example 34 Let us consider the equational theory XOR∪ pk-sk, which, to-

gether with AC for _,_ and & is used for our NSL⊕ protocol presented in

Section 6.1. This equational theory is relevant because none of our previously

defined unification procedures is directly applicable to it, e.g. unification al-

gorithms for exclusive–or such as [68] do not directly apply if extra equations

are added.

For (Σ, Ax,E) a decomposition of XOR ∪ pk-sk, and for terms

t = M ⊕ sk(K, pk(K,M)) and s = X ⊕ sk(K, pk(K,Y )), we have that

[[t]]?E,Ax = {(0, id), . . .} and

[[s]]?E,Ax = {(X ⊕ Y, id),

(Z, {X 7→ 0, Y 7→ Z}), (Z, {X 7→ Z, Y 7→ 0}),
(Z, {X 7→ Z ⊕ U, Y 7→ U}), (Z, {X 7→ U, Y 7→ Z ⊕ U}),
(0, {X 7→ U, Y 7→ U}), (Z1 ⊕ Z2, {X 7→ U ⊕ Z1, Y 7→ U ⊕ Z2}),
(0, {X 7→ V ⊕W,Y 7→ V ⊕W}), . . .}

Note the similarities, and differences, between this example and Example 2.

A follow-up example looks at the most general and complete variant se-

mantics [[t]]E,Ax.

Example 35 Continuing Example 34 it is obvious that the following variants

174



are most general w.r.t. vE,Ax: [[t]]E,Ax = {(0, id)} and

[[s]]E,Ax = {(X ⊕ Y, id),

(Z, {X 7→ 0, Y 7→ Z}), (Z, {X 7→ Z, Y 7→ 0}),
(Z, {X 7→ Z ⊕ U, Y 7→ U}), (Z, {X 7→ U, Y 7→ Z ⊕ U}),
(0, {X 7→ U, Y 7→ U}), (Z1 ⊕ Z2, {X 7→ U ⊕ Z1, Y 7→ U ⊕ Z2})}.

Actually, this example is just Example 4 revisited.

Currently, Maude-NPA restricts itself to a subset of theories satisfying

the finite variant property:

1. The axioms Ax can declare some binary operators in Σ to be commu-

tative (with the comm attribute), or associative-commutative (with the

assoc and comm attributes).

2. The set of rewrite rules E is strongly right irreducible, that is no instance

of the right-hand side of a rule in E by a normalized substitution can

be further simplified by the application the equations in E modulo Ax.

The reasons for restricting ourselves in this way is for efficiency and ease

of implementation. Maude currently supports unification modulo commuta-

tive and associative-commutative theories, as well as syntactic unification,

so this is what drives our choice of Ax. Furthermore, the restriction of E

to strongly right irreducible theories means that the depth of the narrowing

tree is bounded by the number of symbols in a term. Moreover, many of the

finite variant theories that arise in cryptographic protocol analysis satisfy

strong right irreducibility. These include encryption-decryption cancellation,

exclusive-or, and modular exponentiation. The major exception is Abelian

groups (other than those described by exclusive-or). We are currently work-

ing on implementing full variant narrowing in Maude-NPA to handle these

and other cases not currently covered by strong right irreducibility.

6.3 Finding attacks modulo XOR ∪ pk-sk ∪ AC in

Maude-NPA

Now we present the three different protocol case studies: NSL⊕, TMN, and

WEP. The following subsections deal with each of the protocols in that order,

175



but note that there are two subsections for WEP: one which finds the attack

in the original protocol and another that verifies the security of a modified

version of the protocol. That last subsection also includes explanation about

how the Maude-NPA can prove the security of a protocol in the first place.

6.3.1 NSL⊕

We have analyzed the NSL⊕ protocol presented in Section 6.1 modulo its

equational theory XOR∪pk-sk∪AC in Maude-NPA using variant narrowing.

We now explain in more detail all the operations available to the intruder.

Its capabilities are all given in strand notation. Note that we are omitting

the position marker | which is assumed to be at the beginning.

(s1) [(X)−, (Y )−, (X;Y )+] Concatenation

(s2) [(X;Y )−, (X)+] Left-deconcatenation

(s3) [(X;Y )−, (Y )+] Right-deconcatenation

(s4) [(X)−, (Y )−, (X ⊕ Y )+] Exclusive–or

(s6) [(X)−, (sk(i,X))+] Encryption with i’s private key

(s7) [(X)−, (pk(A,X))+] Encryption with any public key

(s8) [(0)+] Generate the exclusive–or neutral element

(s9) [(A)+] Generate any principal’s name.

The attack state pattern from which we start the backwards narrowing

search in this example is given by one strand, representing Bob (b) wanting

to communicate with Alice (a)

:: r :: [(pk(b,X; a))−, (pk(a,X; b⊕ n(b, r)))+, (pk(b, n(b, r)))−|nil]

together with requiring the intruder (i) to have learned Bob’s nonce, i.e.,

n(b, r)∈I. What this represents is an attack in which Bob has properly exe-

cuted the protocol and believes to be talking to Alice, while the intruder has

obtained the nonce that Bob created and considers a secret shared between

Alice and him.

176



Figure 6.1: Pictorial representation of the initial state, leading to an attack
on the NSL⊕ protocol

See Figure 6.1 for a pictorial representation of the strand space and mes-

sages sent and received, depicting the attack found by Maude-NPA. This

attack agrees with the one described in [25]. The figure has been created

with the help of the Maude-NPA GUI [111], with the exclusive–or symbol ⊕
textually represented as ∗ in the figure.

6.3.2 TMN - Key Exchange Protocol

The TMN protocol is a symmetric key distribution protocol [118, 86] initially

proposed by Tatebayashi, Matsuzaki and Newman. The purpose is for A and

B to share a key KB. The server also checks that neither KA nor KB have

been used in prior sessions. The Avispa [11] and XOR-ProVerif [81] (based on

ProVerif [17]) tools are both able to deal with this protocol as well, according

to [83].

The protocol has three principals, which are Alice (A), Bob (B) and the

server (S). There is only a single public key and private key pair in use

which belongs to the server, so we assume that the server is the only one

that can decrypt messages that are encrypted by it. We will write enc( ) for

177



that encryption using the public key of S. The fresh symmetric keys that

are being exchanged are KA and KB. Here is the protocol:

1. A→ S : B, enc(KA)

A sends to S the pair containing the name of the intended communi-

cation partner B, and, encrypted by S’s public key, the freshly chosen

symmetric key KA.

2. S → B : A

S sends to B a notification that A wants to establish a shared key.

3. B → S : A, enc(KB)

B answers to S with the pair of the name A and, encrypted under S’s

public key, its own freshly chosen symmetric key KB.

4. S → A : B,KB ⊕KA

S sends to A the pair with the name of B, and the exclusive-or combi-

nation of the two keys provided by A and B, i.e., KB ⊕KA.

At the end of this protocol, A and B share the fresh key KB, as A can

compute KB = (KB⊕KA)⊕KA, as it knows KA. There is an attack on this

protocol by an intruder I that can be described as follows:

1. A→ S : B, enc(KA)

A starts a normal session with B.

2. S → I : A

I intercepts the message sent by S that was intended for B.

3. I(B)→ S : A, enc(KI)

I impersonates B and sends his own symmetric key to the server.

4. S → I : B,KI ⊕KA

Finally, the intruder intercepts the message intended for A, including

KI ⊕KA, and as the intruder knows KI , he can find KA by computing

KA = (KI ⊕KA)⊕KI . Finally, I can re-transmit the pair B,KI ⊕KA

to A.

178



In our notation for Maude-NPA we have three strands, one for each of the

principals. Note that KA will be represented by a nonce n(A, r), similarly

for KB. The variables NA and NB are used to capture unknown nonces and

the pairing is made explicit using pair( , ):

- (Alice) :: r :: [(pair(B, enc(n(A, r))))+, (pair(B, n(A, r)⊕NB))−]

- (Bob) :: r′ :: [(A)−, (pair(A, enc(n(B, r′))))+]

- (Server)
[(pair(B, enc(NA)))−, (A)+,

(pair(A, enc(NB)))−, (pair(B,NA⊕NB))+]

Let us show the capabilities of the intruder, and note that we are omitting

any leading or trailing nil and the position marker | which is assumed at the

beginning:

(s1) [(X)−, (Y )−, (X ⊕ Y )+] Exclusive–or

(s2) [(pair(X, Y ))−, (X)+] Left–projection

(s3) [(pair(X, Y ))−, (Y )+] Right–projection

(s4) [(X)−, (Y )−, (pair(X, Y ))+] Pairing

(s5) :: r :: [(n(i, r))+] Generate a key for i

(s6) [(N)−, (enc(N))+] Encrypt with S public key

(s7) [(A)+] Generate any principal’s name.

To find the attack that is listed above, we start the Maude-NPA with the

following attack state pattern, from which we start the backwards narrowing

search, representing Alice’s (a) attempt to communicate with Bob (b) where

the intruder is able to learn the nonce (i.e., key) of Alice, i.e., n(a, r)∈I:

:: r :: [(pair(b, enc(n(a, r))))+, (pair(b, n(a, r)⊕NB))−|nil]

See Figure 6.2 for a pictorial representation of the strand space and mes-

sages sent and received, depicting the attack found by Maude-NPA, which is

essentially the attack described above. The figure has been created with the

help of the Maude-NPA GUI [111], with the exclusive–or symbol ⊕ textually

represented as ∗ in the figure.

179



Figure 6.2: Pictorial representation of the initial state, leading to an attack
on the TMN protocol

6.3.3 Wired Equivalent Privacy Protocol

The Wired Equivalent Privacy Protocol (WEP) is defined in [1]. The pur-

pose of WEP is to protect data during wireless transmission. The protocol

encrypts a message M to be sent from principal A to another principal B.

It is a single step protocol with no response:

1. A→ B : V, ([M,C(M)]⊕RC4(V,KAB))

A sends a vector V , paired with the exclusive-or combination of the

message with a checksum (i.e., [M,C(M)]) and RC4(V,KAB) where

RC4 is a public one-way algorithm using the initial vector V and a

symmetric key KAB.

The receiver can then compute the message M as it knows the key KAB

and gets V , so it can compute RC4(V,KAB) and then make use of the

exclusive-or cancellation property to get [M,C(M)]. Verification with

the checksum yields the message M .

The purpose is for no one, except for A and B, to be able to know M .

It turns out there is an attack, using the fact that V can be reused and one

message M1 can be sent to different recipients and thus endanger the secrecy

of a message M2 sent later:

180



1. A→ B : V, ([M1, C(M1)]⊕RC4(V,KAB))

A sends the same message M1 to B.

2. A→ I : V, ([M1, C(M1)]⊕RC4(V,KAI))

Then, A send the same message M1 to I. Now, I is able to determine

RC4(V,KAI) as KAI is known. Then, by exclusive-or combining the

two payloads of 1 and 2 and adding RC4(V,KAI) it gets RC4(V,KAB)

as the result of the term ([M1, C(M1)]⊕RC4(V,KAB))⊕ ([M1, C(M1)]

⊕ RC4(V,KAI)) ⊕ RC4(V,KAI). With that in hand, all further mes-

sages that A sends to B can be accessed by the intruder.

3. A→ I : V, ([M2, C(M2)]⊕RC4(V,KAB))

Intercepting this message intended for B, the intruder can indeed com-

pute [M2, C(M2)] and thus M2 by simple exclusive-or combination:

([M2, C(M2)]⊕RC4(V,KAB))⊕RC4(V,KAB).

In our strand notation for Maude-NPA we give two possible strands, one

with just the single message as described above, and another one sending the

same message twice (similarly to [83]). Note that the secret messages will

be represented by nonces created by the sender, so we can be sure no one

knows them ahead of time, or can guess them. We also make the pairing of

a vector and the remainder of the message explicit, by using pair( , ):

- (Alice) :: r :: [(pair(V, ([n(A, r), c(n(A, r))]⊕ rc4(V, k(A,B)))))+]

- (Alice)
:: r′ :: [ (pair(V, ([n(A, r′), c(n(A, r′))]⊕ rc4(V, k(A,B)))))+,

(pair(V, ([n(A, r′), c(n(A, r′))]⊕ rc4(V, k(A,C)))))+]

Let us show the capabilities of the intruder, and note that we are omitting

any leading or trailing nil and the position marker | which is assumed to be

placed at the beginning:

(s1) [(X)−, (Y )−, (X ⊕ Y )+] Exclusive–or

(s2) [(A)−, (k(A, i))+] Symmetric keys for all principals with intruder i

(s3) [(pair(V,X))−, (V )+] Left–projection

(s4) [(pair(V,X))−, (X)+] Right–projection

181



Figure 6.3: Pictorial representation of the initial state, leading to an attack
on the WEP protocol

(s5) [(V )−, (k(A,B))−, (rc4(V, k(A,B)))+] RC4 generation

(s6) [(N)−, (c(N))+] Checksum generation

(s7) [([N, c(N ′)])−, (N)+] Message extraction

(s8) [(A)+] Generate any principal’s name

To find the attack that is listed above, we start the Maude-NPA with the

following attack state pattern, from which we start the backwards narrowing

search, representing Alice’s (a) message to Bob (b) where the intruder is able

to learn the nonce (i.e., message) that Alice is sending, i.e., n(a, r)∈I:

:: r :: [(pair(v, ([n(a, r), c(n(a, r))]⊕ rc4(v, k(a, b)))))+|nil]

The Maude-NPA is able to find the attack described above in 20 back-

wards steps for this initial state. The attack is presented in Figure 6.3. That

figure has been created with the help of the Maude-NPA GUI [111], with the

exclusive–or symbol ⊕ textually represented as ∗ in the figure.

182



6.3.4 Fixed Version of Wired Equivalent Privacy Protocol

It is possible to fix the WEP protocol quite easily. The suggested fix is to

change the initial vector that is used for each message. The fix has been

proposed before, in [83], and the Maude-NPA is able to verify the security of

the fixed protocol, which is demonstrated in this section.

In the attempt to verify protocols the Maude-NPA tool explores the whole

state space of a protocol, starting its backwards exploration from a symbolic

description of a set of potential attack states and searching for an initial state

of the protocol. In general, this search state space is infinite and the search

would not terminate, and thus no decision about security of protocols could

be made. To deal with this issue the Maude-NPA is equipped with powerful

state space reduction techniques [49, 50], that enable the tool to cut the state

space down. The usual infinite state space actually gets reduced to a finite

state space most of the time but not always.3 In practice, this reduced state

space can often be fully explored in a moderate amount of time.

Of course, for these state space reductions to be worthwhile they need to

ensure that completeness is maintained, as otherwise the absence of attacks in

the reduced state space allows no conclusions about the existence or absence

of attacks in the full state space. The main, and oldest, state space reduction

technique in the tool is that of grammars. Grammars are used to cut down

the search space by identifying non-terminating search paths. Usually the

grammars alone are able to reduce the infinite state space to a finite one.

There are further techniques that remove unreachable states, which elimi-

nates the cost of exploring them, e.g., (i) the idea of public data, (ii) limiting

the dynamic introduction of new strands, (iii) prioritizing input messages,

and (iv) detecting inconsistent states early. There are also techniques for re-

moving redundant states, namely, (v) a subsumption partial order reduction,

and (vi) the super-lazy intruder [49, 50].

These techniques are needed for the efficiency as well as for achieving

full verification. As we will see in this example, no attack is found and the

(reduced) state space is finite and completely explored by the tool. By the

completeness of the state space reductions we can then conclude that there

actually is no attack and the protocol is proven secure modulo the given

3Since the Maude-NPA analyzes protocols assuming an unbounded number of sessions,
such analysis is in general undecidable.

183



algebraic properties.

As described above, a fix for this protocol is to require all the vectors that

are used to be new, i.e., no vector can be re-used. We will only present the

protocol in strand notation, the change needed for the textbook notation is

then obvious. This new protocol definition uses a nonce as the vector and

thus no two vectors used by the participants will ever be the same.

- (Alice)
:: r, r2 :: [( pair(vec(n(A, r2), ([n(A, r), c(n(A, r))]

⊕ rc4(vec(n(A, r2), k(A,B)))))+]

- (Alice)

:: r′, r3, r4 :: [( pair(vec(n(A, r3), ([n(A, r′), c(n(A, r′))]

⊕ rc4(vec(n(A, r3), k(A,B)))))+,

( pair(vec(n(A, r4), ([n(A, r′), c(n(A, r′))]

⊕ rc4(vec(n(A, r4), k(A,C)))))+]

Let us show the additional capability of the intruder, and note that we

are omitting any leading or trailing nil and the position marker | which is

assumed to be placed at the beginning:

(s9) :: r :: [(vec(n(i, r)))+] Generate a fresh vector

We start the Maude-NPA with the same attack state pattern as in the

basic version of the protocol. Note how v still just represents any vector,

which we do not need to specify as a nonce. This pattern represents Alice’s

(a) message to Bob (b) where the intruder is able to learn the nonce (i.e.,

message) that Alice is sending, i.e., n(a, r)∈I:

:: r :: [(pair(v, ([n(a, r), c(n(a, r))]⊕ rc4(v, k(a, b)))))+|nil]

The search started from the above attack state pattern results in a finite

search space, without finding an attack. Therefore, the Maude-NPA has

verified that this fixed version of WEP is indeed secure.

In [83] it is shown that both the Avispa [11] and XOR-ProVerif [81] (based

on ProVerif [17]) tools are able to deal with this protocol, finding the attack

in the initial version presented in the previous subsection and showing its

absence in the fixed version presented here.

184



6.4 Related Work

There is a substantial amount of research on formal verification of crypto-

graphic protocols. Much of it abstracts away from any equational theories

obeyed by the cryptographic operators, but there is a growing amount of

work addressing this problem. The earliest was the NRL Protocol Analyzer

[88], which, like Maude-NPA, was based on unification and backwards search,

implemented via narrowing over confluent equational theories. This was suf-

ficient to handle, for example, the cancellation of encryption and decryption,

although there were many theories of interest it did not address, such as

exclusive-or and other Abelian group operators.

More recently, tools have begun to offer support for specification and, to

some degree, analysis of protocols involving equational theories. These tools

include, for example, ProVerif [17], OFMC [15], and CL-Atse [121]. Both

OFMC and CL-Atse work in the bounded session model, while ProVerif uses

abstraction and unbounded sessions. Both OFMC and CL-Atse support

exclusive-or and Diffie-Hellman exponentiation. ProVerif can also be used

to analyze these, but the equational theories it is known to work well with

are more limited, e.g., not supporting associativity-commutativity or Diffie-

Hellman exponentiation. However, Küsters and Truderung [81, 82] have de-

veloped algorithms that can, under certain restrictions, translate protocols

using exclusive-or or Diffie-Hellman exponentiation to protocols that can be

analyzed by ProVerif in a free algebra model; for exclusive-or they can han-

dle protocols satisfying the ⊕-linearity property. According to a study by

Lafourcade et al. [83], this produces analysis times that are only slightly

slower than analyses by OFMC and CL-Atse, mainly because of the transla-

tion time.

There is also a growing amount of theoretical work on cryptographic

protocol analysis using equational theories, e.g. [3, 26, 21, 28, 16]. This con-

centrates on the decidability of problems of interest to cryptographic proto-

col analysis, such as deducibility, which means that it is possible (e.g. for

an intruder) to deduce a term from a set of terms, and static equivalence,

which means that an intruder cannot tell the difference between two sets

of terms. However, there is much less work on the combination of differ-

ent theories, although Arnaud, Cortier, and Delaune [33] have considered

the problem in terms of decidability of the problem for combination of dis-

185



joint theories, showing that if any two disjoint theories have decidable static

equivalence problems, then so does their combination. More recently Cheva-

lier and Rusinowitch analyze the security of cryptographic protocols via con-

straint systems and have also studied composition of theories. In [27], they

give a general method for combining disjoint theories that is based on the

Baader-Schulz combination algorithm for unification algorithms for differ-

ent theories [13]. This can be thought of as a constraint-based analogue of

the Maude-NPA combination framework, which is also based on the Baader-

Schulz combination algorithm [13].

6.5 Discussion

To gain high assurance about cryptographic protocols using formal methods

requires reasoning modulo the algebraic properties of the underlying crypto-

graphic functions. In symbolic analyses this typically necessitates performing

unification modulo such algebraic properties. However, since a protocol may

use a variety of different functions —so that different protocols typically re-

quire reasoning modulo different theories— it is unrealistic to expect that

a fixed set of unification algorithms will suffice for such analyses. That is,

combination methods that obtain unification algorithm for a composition of

theories out of a family of such algorithm for each of them, are unavoidable.

Standard methods for obtaining a unification algorithm for a combined the-

ory E1 ∪ . . . ∪ En [13] are computationally costly due to the high degree of

non-determinism in the combination method; furthermore, they require the

existence of a unification algorithm for each individual theory Ei, which in

practice may not be available in a tool’s infrastructure. In Chapter 6 we have

proposed an alternative method based on folding variant narrowing to obtain

a (E1 ∪ . . . ∪ En)-unification algorithm under simpler requirements. Specif-

ically, dedicated implementations of unification algorithms for each of the

theories Ei are not needed: in our example, only a dedicated AC-unification

algorithm was used: no dedicated algorithms for XOR of pk-sk were needed.

Furthermore, even though narrowing is less efficient than a dedicated algo-

rithm for each individual theory Ei, the costly computational overhead of a

standard combination method is avoided. The case studies presented have

shown that variant narrowing, as supported by the Maude-NPA, is indeed

186



an effective method to deal with nontrivial combinations of equational theo-

ries; and for analyzing many protocols with even a modest infrastructure of

built-in unification algorithms.

We should emphasize that standard combination methods such as those

described in [13], and the alternative variant narrowing method presented

here are not rival methods. Instead they are highly complementary methods

which, when used in tandem, allow a tool to analyze a much wider range of

protocols than those analyzable by each method in isolation. Let us use our

example theory XOR∪pk -sk∪AC to illustrate this important point. Variant

narrowing decomposed this combined theory into: (i) three rewrite rules for

XOR and two rewrite rules for pk-sk plus, (ii) three instances of AC: one for

⊕, another for , and another for & . That is, variant narrowing with the

rules in (i) was performed modulo the axioms in (ii). But the axioms in (ii)

are themselves a combined theory (in fact, also combined with all the other

function symbols in the protocol specification as free function symbols). The

Maude infrastructure used by Maude-NPA has in fact used an order-sorted

version of a standard combination method in the style of [13] to support

unification with the combined axioms of (ii). Therefore, the advantages of

using standard combination methods and variant narrowing in tandem are

the following:

1. A given tool infrastructure can only have a finite number of predefined

(finitary) unification algorithms for, say, theories T1, . . . , Tk; however, it

should also be able to support any combination of such built-in theories

by a standard combination method.

2. A given protocol may require performing unification modulo a combi-

nation of theories E1 ∪ . . .∪En, but some of the Ei may not belong to

the library T1, . . . , Tk, so that the standard combination method cannot

be used.

3. However, if E1 ∪ . . . ∪ En can be refactored as a theory decomposition

(Σ, B,R) that: (i) it has the finite variant property; and (ii) B is a

combination of the theories T1, . . . , Tk supported by the current library,

then a finitary (E1 ∪ . . . ∪ En)-unification algorithm can be obtained

by variant narrowing.

187



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This chapter first presents the conclusions of this dissertation, followed by a

discussion of future research directions.

7.1 Conclusions

Three aspects of browser security have been addressed in this dissertation:

(i) the machine-to-user communication, (ii) internal browser security con-

cerns and (iii) the machine-to-machine communication. First, we deal with

the machine-to-user communication for two browsers, IE and IBOS, by show-

ing a methodology of creating models for browsers that are amenable to for-

mal analysis of security properties in areas (i) and (ii). Regarding (i), this

methodology does find many possible attacks in IE for both the address bar

and the status bar. It also shows the absence of attacks for the address bar of

IBOS. As for (ii), we use the same methodology to look at internal browser

security in the case of IBOS and the same origin policy (SOP). There we

check that the SOP holds and are able to find a bug in the display memory

management.

For (iii), the machine-to-machine communication, we look into browser-

generic cryptographic protocols, and are able to analyze a number of them

modulo their algebraic properties. We find bugs in some protocols while

showing the security of others. To be able to analyze such protocols modulo

their algebraic properties we use a new generic method we have developed

in this dissertation which allows the effective computation of unifiers modulo

equational theories, based on a new narrowing strategy, which we call fold-

ing variant narrowing. Related to that we have presented a new automatic

method for checking the finite variant property for a given theory and paved

the way for further applications based on this new narrowing strategy.

188



Comparing to existing methods, like the ProVerif tool [17] and its adap-

tations for analysis modulo specific algebraic theories like exclusive-or or

Diffie-Hellman [81, 82], it turns out that using the unification based on our

new narrowing strategy in the Maude-NPA tool [47, 48] is quite more gen-

eral. It simply does not need to be specifically tailored to the exact theory

modulo which the protocol is supposed to work.

The key advancements in this dissertation are: (i) the new methodol-

ogy for formal modeling and analysis of web browsers; (ii) the case studies

with that methodology on IE GUI and IBOS GUI and internals; (iii) a new

narrowing strategy called folding variant narrowing that is used for the com-

putation of unification modulo axioms; (iv) an automatic check for the finite

variant property; (v) cryptographic protocol case studies based on the new

unification algorithm; and (vi) paving the way for further automated deduc-

tion uses of folding variant narrowing.

7.1.1 Browser Analysis Conclusions

GUI logic flaws are a real and pressing security problem – these flaws can be

exploited to lure even security-conscious users to visit malicious web pages.

We have formulated GUI logic correctness as a new research problem, and

have proposed a systematic approach to pro-actively uncover logic flaws in

browser GUI design/implementation that lead to spoofing attacks.

Specifically, based upon an in-depth study of the logic of key subsets of

IE source code, we have developed a formal model of the browser logic and

have applied formal reasoning to uncover important new spoofing scenar-

ios. This has been done for both the status bar and the address bar. The

knowledge obtained from our approach offers an in-depth understanding of

potential logic flaws in the graphical interface implementation. The IE devel-

opment team has confirmed that all thirteen flaws reported by us are indeed

exploitable, and has fixed eleven of them in the latest build. Through this

work, we demonstrate the feasibility and the benefit of applying a rigorous

formal approach to GUI design and implementation.

Despite the fact that the analysis approach is systematic, it only pro-

vides relative completeness : relative to the kind of spoofing scenarios being

considered, the IE code subset currently modeled, and our search spaces.

189



We have also developed a model of the logic of IBOS in which we have

proven the correctness of the address bar handling, just like we analyzed the

address bar for IE.

In that model of IBOS we have shown that the SOP holds, by analyzing

a number of properties that altogether imply SOP. However, we were able

to find a bug in the display memory management as originally designed as

well. We have proposed a straightforward fix and we have shown that in the

model this fix works correctly.

Finding flaws like these, or showing their absence, is important for the

level of trust a user can place on the browser being used. The kind of analysis

we do is of course not only relevant for IE and IBOS, but can provide valuable

insight into any browser, or any other highly networked application or GUI-

based application.

7.1.2 Folding Variant Narrowing Conclusions

We have presented a self-contained and extended exposition of the key con-

cepts, results, and algorithms for variant narrowing and variant-based uni-

fication; and we have illustrated the main ideas with a rich collection of

examples. What these new techniques achieve is to bring narrowing modulo

axioms from a theoretical possibility with hopeless practical prospects into a

practically useful technique with many potential applications, some of which

have already been exploited in actual tools such as the Maude-NPA, the

Maude Chuch-Rosser Checker (CRC) and Maude Coherence Checker (ChC)

tools; see the future work section for more applications.

7.1.3 Protocol Analysis Conclusions

The case studies presented have shown that folding variant narrowing, as

supported by the Maude-NPA, is indeed an effective method to deal with

nontrivial combinations of equational theories. Using Maude-NPA allows us

to analyze multiple cryptographic protocols, showcased by the four protocol

case studies, proving correctness for one protocol and finding flaws in the

remaining three protocols.

190



7.2 Future Work

We split the future work into three subsections, dealing with browser analysis

in Section 7.2.1, folding variant narrowing in Section 7.2.2 and cryptographic

protocol analysis in Section 7.2.3

7.2.1 Browser Analysis Future Work

Regarding the IBOS web browser there are a few follow up projects that

would be useful. First, now that a design that has been analyzed in detail

exists, it would make sense to analyze the implementation using (semi-)

automatic source code verification tools [107, 109, 108]. Another way of

increasing the confidence in IBOS would be to actually use the proven secure

microkernel seL4 or to develop a new proof of security for IBOS’ underlying

microkernel.

Another important task ahead is to obtain a precise high-level specifi-

cation of more IE modules, and to extend our current formal models and

analyses to cover most IE functionality. For example, the model should ac-

commodate the tab browsing logic and the hosting mechanisms for document

types other than HTML, such as PDF, Microsoft Word, Macromedia Flash,

etc. Our methodology can be extended to tackling this pending challenge in

the future.

GUI logic flaws affect all web browsers, not just IE and IBOS. We believe

that the methodology presented in this dissertation can be equally applied

to systematically identify vulnerabilities in other browsers. More broadly,

non-browser applications, e.g., email clients and digital identity management

tools [93], have similar graphical interface integrity issues. Thus, ensuring

GUI logic correctness is a research direction with significant practical rele-

vance.

7.2.2 Folding Variant Narrowing Future Work

Folding variant narrowing has allowed work in the direction of asymmetric

unification, where the instantiation of one of the sides of a unification problem

must remain in canonical form. This does turn out to be very useful for

cryptographic protocol analysis and is, in some way, already done in many

191



approaches but has not been formalized in a general way before. Together

with a number of colleagues we have submitted work on this [46]. Once

this asymmetric unification problem was made explicit, work has also been

done on dedicated unification algorithms, e.g., for a combination of theories

with exclusive-or, that would have higher performance over our more generic,

narrowing based approach.

Folding variant narrowing has already been used in some automated de-

duction tools, specifically for checking the confluence and coherence of rewrite

theories modulo axioms in the Maude CRC and ChC tools [44] and to rea-

son about termination modulo combination of associativity, commutativity

and identity in the Maude Termination Tool [41]. Note that a variant based

approach can actually be used even for theories that do not have the finite

variant property as a given term may have a finite number of variants any-

way. In this way we envision many other applications of variant narrowing

in automated deduction.

A few issues with great potential for improvement are: (i) better variant

generation strategies and (ii) better algorithms for ensuring that a theory

has the finite variant property. For example, the current implementation of

folding variant narrowing and variant-based unification available in Maude

[40] and used by the Maude-NPA only supports a subclass of FV theories,

and could be substantially optimized in many ways. Here lazy narrowing

strategies may be useful but no notion of needed or demanded evaluation

step has been defined for the modulo case. Another promising direction is to

further advance the proof techniques for checking FV and implement tools for

such checking. There is recent work on extending techniques for termination

of rewriting to termination of narrowing which could be adapted to prove

FV. Modularity results for modular combination of theories enjoying the

finite variant property are also interesting, similarly to modularity results for

termination of basic narrowing [7].

Furthermore, a promising direction is the study of symbolic, narrowing-

based, reachability analysis techniques for rewrite theories R = (Σ, E ∪
Ax,R), where E is confluent, terminating, sort-decreasing and coherent mod-

ulo Ax and a finitary Ax-unification exists, but E∪Ax need not be FV. And

an even more ambitious future task is to extend these techniques to new

techniques for the development of finitary unification algorithms for theories

that have such algorithms but do not enjoy FV.

192



7.2.3 Protocol Analysis Future Work

The Maude-NPA actually is currently restricted to only applying folding

variant narrowing to the case of theories that are strongly right irreducible.

It would be very useful to extend the Maude-NPA’s unification features to

the full capabilities of the folding variant narrowing theory as given here and

to remove the strongly right irreducible requirement. Indeed, current work

on the Maude implementation should make this possible in the near future.

A very important future direction is work in formal tools supporting

symbolic protocol analysis modulo equational properties. Such work should

include: (i) developing methods for expanding a tool’s built-in unification

infrastructure based on a finite number of predefined (finitary) unification

algorithms for theories T1, . . . , Tk (with any combination of them done by

standard combination methods), to make it as efficient and extensible as

possible; and (ii) improving and optimizing the methods for efficient variant

narrowing modulo such infrastructure. Good candidates for new theories Tj

to be added to the built-in infrastructure include commonly used theories,

with high priority given to theories that lack the finite variant properties.

For example, the theory of homomorphic encryption, which lacks the finite

variant property, has been recently added to Maude-NPA for exactly this

purpose.

193



APPENDIX A

EXPLAINED MAUDE SPECIFICATION
OF THE IE MODEL

All the data source files for this chapter are available at [112]. We are using

Maude 2.6 for all of these experiments.

A.1 Status Bar - Explained Specification

In this section we list and describe the source code of the Maude model of

the status bar, including its execution and the initial state space generation.

fmod OBJECT is

including QID .

sort Attribute .

sort AttributeSet .

subsort Attribute < AttributeSet .

op nil : -> AttributeSet .

op _,_ : AttributeSet AttributeSet

-> AttributeSet [assoc comm id: nil] .

sort ObjectName .

subsort Qid < ObjectName .

op nil : -> ObjectName .

sort Object .

op <_|_> : ObjectName AttributeSet -> Object .

Objects have attributes that are stored as associative-commutative sets

and they do have an object name.

sort ClassName .

ops AbstractElement Anchor Button Form

Image InputField Label

: -> ClassName .

194



sort URL .

ops maliciousUrl wantedUrl emptyUrl arbitraryUrl

: -> URL .

sort InputType .

ops htmlInputButton htmlInputText

htmlInputImage htmlInputSubmit

: -> InputType .

op className:_ : ClassName -> Attribute .

op targetURL:_ : URL -> Attribute .

op upLink:_ : ObjectName -> Attribute .

op container:_ : ObjectName -> Attribute .

op inputType:_ : InputType -> Attribute .

endfm

Class names, URLs and the input type are all possible attributes of an

object. Also, each object has an uplink to a parent object and may have a

link to an object containing it.

fmod ACTION is

including OBJECT .

sort Action .

sort ActionList .

subsort Action < ActionList .

op noOp : -> Action .

op _;_ : ActionList ActionList

-> ActionList [assoc id: noOp] .

Actions are stored as a list, due to their nature of being executed in order.

sort MessageType .

sort RawMessageType .

subsort RawMessageType < MessageType .

ops MOUSEMOVE LBUTTONDOWN LBUTTONUP

: -> RawMessageType .

ops MOUSEOVER MOUSELEAVE : -> MessageType .

We differentiate between raw mouse messages, i.e., movement of the

mouse and the button being pressed and released, and mouse messages, like

mousing over an element or leaving an element on the screen.

195



op onMouseMessage : ObjectName RawMessageType

-> Action .

op pumpMessage : ObjectName MessageType -> Action .

op fireJScriptNonClick : ObjectName MessageType

-> Action .

op fireJScriptClick : ObjectName -> Action .

op bubbleHandleMessage : ObjectName MessageType

-> Action .

op bubbleClickAction : ObjectName -> Action .

op doClick : ObjectName -> Action .

op handleMessage : ObjectName MessageType -> Action .

op clickAction : ObjectName -> Action .

op cancelBubble : -> Action .

ops setStatusText FollowHyperlink : URL -> Action .

op eyeInspection : -> Action .

endfm

Actions can be to pass messages of different types to objects, to simulate

what JavaScript does1, the bubbling mechanism of passing the message on

to the parent HTML object, and click messages.

Also, setting of the status bar, following a hyper link and the user in-

specting the status bar are all explicitly shown as actions which allows our

search later on to find these easily.

fmod STATE-MULTI-SET is

including ACTION .

sort StateMultiSet .

sort StateMultiSetElement .

subsort StateMultiSetElement < StateMultiSet .

op nil : -> StateMultiSet .

op __ : StateMultiSet StateMultiSet

-> StateMultiSet [assoc comm id: nil] .

sort ObjectMultiSet .

subsort Object < ObjectMultiSet .

op nil : -> ObjectMultiSet .

op __ : ObjectMultiSet ObjectMultiSet

-> ObjectMultiSet [assoc comm id: nil] .

1The JavaScript action does get translated to nothing later on, but it is included here
so that malicious use of JavaScript could be modeled if so desired. In the end we decided
to only care about static HTML.

196



op {_} : ObjectMultiSet -> StateMultiSetElement .

op [_] : ActionList -> StateMultiSetElement .

op statusBar : URL -> StateMultiSetElement .

op memorizedUrl : URL -> StateMultiSetElement .

endfm

A multiset of objects is used to represent all the HTML objects; it is then

wrapped by curly braces to become a part of the state multi set. That state

multiset also includes the list of actions, wrapped by square brackets, the

actual status bar value, and the user memorized URL value.

mod GENERAL-MOUSE-RULES is

including STATE-MULTI-SET .

var A : Action . var AL : ActionList .

var M : MessageType . vars RM RM’ : RawMessageType .

vars O O’ O’’ : ObjectName .

vars Atts Atts’ : AttributeSet . vars Url Url’ : URL .

var C : ClassName . var OMS : ObjectMultiSet .

**** We are interested in two consecutive mouse

**** messages, be they moves or clicks, this means that

**** the ’old’ HTML object is always getting the first

**** message.

eq [ onMouseMessage(O, RM) ;

onMouseMessage(O, RM’) ; AL ]

= [ pumpMessage(O, RM) ; pumpMessage(O, RM’) ; AL ] .

If there are two mouse messages on the same HTML object, then they

can simply be pumped directly to that HTML object. If the messages are

for two different HTML objects O and O’ the next equation will take care of

them:

ceq [onMouseMessage(O,RM) ; onMouseMessage(O’,RM’) ;

AL] {OMS}

= [pumpMessage(O,RM) ; pumpMessage(O,MOUSELEAVE) ;

if not (childOfAnchor(O’, OMS))

then setStatusText(emptyUrl)

else noOp fi ;

pumpMessage(O’,RM’) ; pumpMessage(O’,MOUSEOVER) ;

AL] {OMS}

if O =/= O’ .

197



On the other hand, for mouse messages on two different objects, a

MOUSELEAVE message on the first object is added after the first message and a

MOUSEOVER message on the second object is added after the second message.

Additionally, if the second object is not the child of an anchor, the status

bar is set to the empty URL; otherwise this step is skipped.

**** checking property of being a child of an anchor

**** (direct, or indirect, i.e., transitive)

op childOfAnchor : ObjectName ObjectMultiSet -> Bool .

eq childOfAnchor(O,

< O | upLink: O’ , Atts >

< O’ | className: C , upLink: O’’ , Atts’ > OMS)

= if C == Anchor

then true

else childOfAnchor(O,

< O | upLink: O’’ , Atts > OMS)

fi .

eq childOfAnchor(O, < O | upLink: nil , Atts >

OMS)

= false .

The check for being a child of an anchor is transitive and goes to the top,

until there are no further parent objects available, unless an anchor object is

found.

eq [pumpMessage(O, M) ; AL]

= [fireJScriptNonClick(O, M) ;

bubbleHandleMessage(O, M) ;

if M == LBUTTONUP then doClick(O) else noOp fi ;

AL] .

Pumping a message results in the JavaScript non-click message being

triggered (which, as mentioned before, will disappear; also see code later) and

the start of the bubble mechanism for that object and message. Afterwards,

if it was the mouse button being released, i.e., LBUTTONUP, then the method

for a click is started. Bubbling is described next:

rl [bubbleHandleMessage(O, M) ; AL]

{< O | upLink: O’ , Atts > OMS}

=> [handleMessage(O, M) ;

if O’ == nil

198



then noOp

else bubbleHandleMessage(O’, M)

fi ;

AL]

{< O | upLink: O’ , Atts > OMS} .

A bubble handle message is transformed to handling that message at the

current object, and, if there is a parent object, passing the bubble handle

message on to that object afterwards. The handling of a message can end the

bubbling mechanism by posting a cancelBubble into the list of actions. The

same happens to the bubbling of a click action instead of a handle message.

rl [bubbleClickAction(O) ; AL]

{< O | upLink: O’ , Atts > OMS}

=> [clickAction(O) ;

if O’ == nil then noOp

else bubbleClickAction(O’) fi ; AL]

{< O | upLink: O’ , Atts > OMS} .

eq [cancelBubble ; bubbleHandleMessage(O, M) ; AL]

= [AL] .

eq [cancelBubble ; bubbleClickAction(O) ; AL]

= [AL] .

eq [cancelBubble ; AL]

= [AL] [owise] .

Canceling the bubble removes the bubbling handle message as well as the

bubbling click action. Note that only the first action in the list of actions is

actively executed, these dormant bubbling actions can be removed easily and

there is no chance their actions could be executed already. The last equation,

which allows cancelBubble to be removed, is marked with [owise], which

means it will only be executed when none of the other equations is applicable.

rl [setStatusText(Url) ; AL]

statusBar(Url’)

=> [AL]

statusBar(Url) .

rl [eyeInspection ; AL]

statusBar(Url) memorizedUrl(Url’)

199



=> [AL]

statusBar(Url) memorizedUrl(Url) .

eq [FollowHyperlink(Url) ; A ; AL]

= [FollowHyperlink(Url)] if A =/= noOp .

endm

The action of setting the status bar URL is completed by actually chang-

ing the URL in the status bar to the new URL. The user’s inspection of

the status bar copies the value of the status bar into the memorized URL

wrapper, and following a hyperlink ends the action execution by dropping

all further actions that should follow, as this is the point where the decision

can be made whether the URL the navigation actually goes to is the same

as the one in the user’s memory, the status bar, both, or neither of them.

We assume from now on that the JavaScript that is being used does

nothing too outrageous, like changing the class name or the whole DOM

tree, as we are ultimately interested in security in the absence of JavaScript

for the status bar anyway. This allows us to model any XHandleMessage

(with X any of the elements) with a simple equation instead of requiring

rules.

mod ABSTRACT-ELEMENT is

including STATE-MULTI-SET .

var AL : ActionList . var O : ObjectName .

var M : MessageType .

op AbstractElementHandleMessage

: ObjectName MessageType -> Action .

op AbstractElementDoClick : ObjectName -> Action .

op AbstractElementClickAction : ObjectName -> Action .

eq [AbstractElementHandleMessage(O,M) ; AL]

= [AL] .

eq [AbstractElementClickAction(O) ; AL]

= [AL] .

eq [AbstractElementDoClick(O) ; AL]

= [fireJScriptClick(O) ; bubbleClickAction(O) ; AL] .

endm

200



The HandleMessage and ClickAction of AbstractElement do nothing,

while the DoClick does start the JavaScript click and bubbles, i.e., continues,

the click action. Note that these will be overwritten in each more specific

class with the actual implementation behavior.

mod ANCHOR is

including STATE-MULTI-SET .

including ABSTRACT-ELEMENT .

var AL : ActionList . var O : ObjectName .

var M : MessageType . var Atts : AttributeSet .

var Url : URL . var OMS : ObjectMultiSet .

op AnchorHandleMessage : ObjectName MessageType

-> Action .

op AnchorDoClick : ObjectName -> Action .

op AnchorClickAction : ObjectName -> Action .

eq [handleMessage(O, M) ; AL]

{< O | className: Anchor , Atts > OMS}

= [AnchorHandleMessage(O, M) ; AL]

{< O | className: Anchor , Atts > OMS} .

eq [doClick(O) ; AL]

{< O | className: Anchor , Atts > OMS}

= [AnchorDoClick(O) ; AL]

{< O | className: Anchor , Atts > OMS} .

eq [clickAction(O) ; AL]

{< O | className: Anchor , Atts > OMS}

= [AnchorClickAction(O) ; AL]

{< O | className: Anchor , Atts > OMS} .

ceq [AnchorHandleMessage(O, M) ; AL]

= [cancelBubble ; AL]

if M == LBUTTONDOWN .

crl [AnchorHandleMessage(O,M) ; AL]

{< O | targetURL: Url , Atts > OMS}

=> [setStatusText(Url) ; AL]

{< O | targetURL: Url , Atts > OMS}

if M == MOUSEOVER .

201



ceq [AnchorHandleMessage(O,M) ; AL]

= [AL]

if M == MOUSELEAVE or M == MOUSEMOVE or

M == LBUTTONUP .

rl [AnchorClickAction(O) ; AL]

{< O | targetURL: Url , className: Anchor , Atts >

OMS}

=> [FollowHyperlink(Url) ; AL]

{< O | targetURL: Url , className: Anchor , Atts >

OMS} .

eq [AnchorDoClick(O) ; AL]

= [AbstractElementDoClick(O) ; AL ] .

endm

For the Anchor element the three standard actions get instantiated with

their specific Anchor version. If the message is a left button down, then the

Anchor handles it by stopping the bubbling mechanism as itself will take of

the click when it gets it. If the message is a mouse over message, it will

similarly just set the status bar text to its URL. If it is a mouse move, the

left button being released or the anchor is left (due to a move) then it just

does nothing and the bubble continues. On a click action it actually starts

navigation to its URL.

mod BUTTON is

including STATE-MULTI-SET .

including ABSTRACT-ELEMENT .

var AL : ActionList . vars O O’ : ObjectName .

var M : MessageType . vars Atts Atts’ : AttributeSet .

var Url : URL . var OMS : ObjectMultiSet .

op ButtonHandleMessage : ObjectName MessageType

-> Action .

op ButtonDoClick : ObjectName -> Action .

op ButtonClickAction : ObjectName -> Action .

eq [handleMessage(O, M) ; AL]

{< O | className: Button , Atts > OMS}

= [ButtonHandleMessage(O,M) ; AL]

{< O | className: Button , Atts > OMS} .

202



eq [doClick(O) ; AL]

{< O | className: Button , Atts > OMS}

= [ButtonDoClick(O) ; AL]

{< O | className: Button , Atts > OMS} .

eq [clickAction(O) ; AL]

{< O | className: Button , Atts > OMS}

= [ButtonClickAction(O) ; AL]

{< O | className: Button , Atts > OMS} .

eq [ButtonHandleMessage(O,M) ; AL]

= [AbstractElementHandleMessage(O,M) ; AL] .

rl [ButtonClickAction(O) ; AL]

{< O | container: O’ , className: Button , Atts >

< O’ | targetURL: Url , className: Form , Atts’ >

OMS}

=> [FollowHyperlink(Url) ; cancelBubble ; AL]

{< O | container: O’ , className: Button , Atts >

< O’ | targetURL: Url , className: Form , Atts’ >

OMS} .

eq [ButtonClickAction(O) ; AL]

{< O | container: nil , className: Button , Atts >

OMS}

= [cancelBubble ; AL]

{< O | container: nil , className: Button , Atts >

OMS} .

eq [ButtonDoClick(O) ; AL]

= [AbstractElementDoClick(O) ; AL ] .

endm

The Button works like the Anchor, in that it instantiates all actions to

its class-specific actions. Message handling is then left to the default version

of an abstract element, similarly for DoClick. A ClickAction triggers nav-

igation to the URL stored in the object associated to the button. If there is

no associated object the button cancels the bubble and does nothing instead.

mod FORM is

including STATE-MULTI-SET .

including ABSTRACT-ELEMENT .

203



var AL : ActionList . var O : ObjectName .

var M : MessageType . var Atts : AttributeSet .

var OMS : ObjectMultiSet .

op FormHandleMessage : ObjectName MessageType

-> Action .

op FormDoClick : ObjectName -> Action .

op FormClickAction : ObjectName -> Action .

eq [handleMessage(O, M) ; AL]

{< O | className: Form , Atts > OMS}

= [FormHandleMessage(O,M) ; AL]

{< O | className: Form , Atts > OMS} .

eq [doClick(O) ; AL]

{< O | className: Form , Atts > OMS}

= [FormDoClick(O) ; AL]

{< O | className: Form , Atts > OMS} .

eq [clickAction(O) ; AL]

{< O | className: Form , Atts > OMS}

= [FormClickAction(O) ; AL]

{< O | className: Form , Atts > OMS} .

eq [FormHandleMessage(O,M) ; AL]

= [AbstractElementHandleMessage(O,M) ; AL] .

eq [FormDoClick(O) ; AL]

= [AbstractElementDoClick(O) ; AL] .

eq [FormClickAction(O) ; AL]

= [AbstractElementClickAction(O) ; AL] .

endm

For a Form, all actions default to the appropriate action of the abstract

element.

mod IMAGE is

including STATE-MULTI-SET .

including ABSTRACT-ELEMENT .

including ANCHOR .

var AL : ActionList . vars O O’ : ObjectName .

204



var M : MessageType . vars Atts Atts’ : AttributeSet .

var Url : URL . var OMS : ObjectMultiSet .

op ImageHandleMessage : ObjectName MessageType

-> Action .

op ImageDoClick : ObjectName -> Action .

op ImageClickAction : ObjectName -> Action .

eq [handleMessage(O, M) ; AL]

{< O | className: Image , Atts > OMS}

= [ImageHandleMessage(O,M) ; AL]

{< O | className: Image , Atts > OMS} .

eq [doClick(O) ; AL]

{< O | className: Image , Atts > OMS}

= [ImageDoClick(O) ; AL]

{< O | className: Image , Atts > OMS} .

eq [clickAction(O) ; AL]

{< O | className: Image , Atts > OMS}

= [ImageClickAction(O) ; AL]

{< O | className: Image , Atts > OMS} .

eq [ImageDoClick(O) ; AL]

= [AbstractElementDoClick(O) ; AL] .

rl [ImageClickAction(O) ; AL]

{< O | container: O’ , className: Image , Atts >

< O’ | className: Anchor , targetURL: Url , Atts’ >

OMS}

=> [AnchorClickAction(O’) ; cancelBubble ; AL]

{< O | container: O’ , className: Image , Atts >

< O’ | className: Anchor , targetURL: Url , Atts’ >

OMS} .

rl [ImageClickAction(O) ; AL]

{< O | container: nil , className: Image , Atts >

OMS}

=> [cancelBubble ; AL]

{< O | container: nil , className: Image , Atts >

OMS} .

ceq [ImageHandleMessage(O,M) ; AL]

= [AL]

205



if M =/= MOUSEOVER .

rl [ImageHandleMessage(O,MOUSEOVER) ; AL]

{< O | container: O’ , className: Image , Atts >

< O’ | className: Anchor , targetURL: Url , Atts’ >

OMS}

=> [setStatusText(Url) ; AL]

{< O | container: O’ , className: Image , Atts >

< O’ | className: Anchor , targetURL: Url , Atts’ >

OMS} .

rl [ImageHandleMessage(O,MOUSEOVER) ; AL]

{< O | container: nil , className: Image , Atts >

OMS}

=> [AL]

{< O | container: nil , className: Image , Atts >

OMS} .

endm

For an Image, the DoClick action defaults to the way of being handled

by the abstract element. The ClickAction either does nothing, if there

is no associated Anchor for the Image, or calls AnchorClickAction on the

associated anchor, if there is one. For message handling of anything but a

MOUSEOVER nothing happens. In case of a MOUSEOVER message being handled,

if there is an associated (i.e., containing) Anchor then the targetURL from

there is set in the status bar. Without an associated Anchor this message

just gets dropped.

mod INPUT-FIELD is

including STATE-MULTI-SET .

including ABSTRACT-ELEMENT .

var AL : ActionList . vars O O’ : ObjectName .

var M : MessageType . vars Atts Atts’ : AttributeSet .

var Url : URL . var OMS : ObjectMultiSet .

op InputFieldHandleMessage : ObjectName MessageType

-> Action .

op InputFieldDoClick : ObjectName -> Action .

op InputFieldClickAction : ObjectName -> Action .

eq [handleMessage(O, M) ; AL]

{< O | className: InputField , Atts > OMS}

206



= [InputFieldHandleMessage(O,M) ; AL]

{< O | className: InputField , Atts > OMS} .

eq [doClick(O) ; AL]

{< O | className: InputField , Atts > OMS}

= [InputFieldDoClick(O) ; AL]

{< O | className: InputField , Atts > OMS} .

eq [clickAction(O) ; AL]

{< O | className: InputField , Atts > OMS}

= [InputFieldClickAction(O) ; AL]

{< O | className: InputField , Atts > OMS} .

eq [InputFieldHandleMessage(O,M) ; AL]

= [AbstractElementHandleMessage(O,M) ; AL] .

As usual, for InputField elements the element-specific functions are

called. Message handling is left to the abstract element way of handling

the message. Note that in what follows we assume sane JavaScript which

does not change the DOM tree, similarly to what we required before, as we

are ultimately interested in static HTML for the status bar.

eq [InputFieldClickAction(O) ; AL]

{< O | inputType: htmlInputButton ,

className: InputField , Atts > OMS}

= [AL]

{< O | inputType: htmlInputButton ,

className: InputField , Atts > OMS} .

eq [InputFieldClickAction(O) ; AL]

{< O | inputType: htmlInputText ,

className: InputField , Atts > OMS}

= [AbstractElementClickAction(O) ; AL]

{< O | inputType: htmlInputText ,

className: InputField , Atts > OMS} .

crl [InputFieldClickAction(O) ; AL]

{< O | inputType: htmlInputImage , container: O’ ,

className: InputField , Atts >

< O’ | targetURL: Url , className: Form , Atts’ >

OMS}

=> [FollowHyperlink(Url) ; cancelBubble ; AL]

{< O | inputType: htmlInputImage , container: O’ ,

207



className: InputField , Atts >

< O’ | targetURL: Url , className: Form , Atts’ >

OMS}

if O’ =/= nil .

eq [InputFieldClickAction(O) ; AL]

{< O | inputType: htmlInputImage , container: nil ,

className: InputField , Atts > OMS}

= [cancelBubble ; AL]

{< O | inputType: htmlInputImage , container: nil ,

className: InputField , Atts > OMS} .

crl [InputFieldClickAction(O) ; AL]

{< O | inputType: htmlInputSubmit , container: O’ ,

className: InputField , Atts >

< O’ | targetURL: Url , className: Form , Atts’ >

OMS}

=> [FollowHyperlink(Url) ; cancelBubble ; AL]

{< O | inputType: htmlInputSubmit , container: O’ ,

className: InputField , Atts >

< O’ | targetURL: Url , className: Form , Atts’ >

OMS}

if O’ =/= nil .

eq [InputFieldClickAction(O) ; AL]

{< O | inputType: htmlInputSubmit , container: nil ,

className: InputField , Atts > OMS}

= [cancelBubble ; AL]

{< O | inputType: htmlInputSubmit , container: nil ,

className: InputField , Atts > OMS} .

eq [InputFieldDoClick(O) ; AL]

= [AbstractElementDoClick(O) ; AL] .

endm

For the InputField in the case of a ClickAction there are many different

possible outcomes. First, if the inputType is that of a htmlInputButton it

is simply dropped. If the inputType is a htmlInputText then the abstract

elements handling is called.

In case of an htmlInputImage the way it is handled depends on whether

there is an associated Form, and in case there is one then navigation to the

URL of that Form is started. Without an associated Form, the bubble is

canceled. The same thing happens for the case of htmlInputSubmit, in that

208



an associated Form triggers navigation to the URL of that Form, with the

bubble being canceled otherwise.

The DoClick is then just handled by the abstract element base case.

mod LABEL is

including STATE-MULTI-SET .

including ABSTRACT-ELEMENT .

var AL : ActionList . var O : ObjectName .

var M : MessageType . var Atts : AttributeSet .

var OMS : ObjectMultiSet .

op LabelHandleMessage : ObjectName MessageType

-> Action .

op LabelDoClick : ObjectName -> Action .

op LabelClickAction : ObjectName -> Action .

eq [handleMessage(O, M) ; AL]

{< O | className: Label , Atts > OMS}

= [LabelHandleMessage(O,M) ; AL]

{< O | className: Label , Atts > OMS} .

eq [doClick(O) ; AL]

{< O | className: Label , Atts > OMS}

= [LabelDoClick(O) ; AL]

{< O | className: Label , Atts > OMS} .

eq [clickAction(O) ; AL]

{< O | className: Label , Atts > OMS}

= [LabelClickAction(O) ; AL]

{< O | className: Label , Atts > OMS} .

ceq [LabelHandleMessage(O,M) ; AL]

= [cancelBubble ; AL]

if M == MOUSEOVER or M == MOUSELEAVE .

ceq [LabelHandleMessage(O,M) ; AL]

= [AbstractElementHandleMessage(O,M) ; AL]

if M == LBUTTONUP or M == LBUTTONDOWN or

M == MOUSEMOVE .

eq [LabelDoClick(O) ; AL]

= [AbstractElementDoClick(O) ; AL] .

209



eq [LabelClickAction(O) ; AL]

= [FollowHyperlink(maliciousUrl) ; cancelBubble ; AL].

endm

Handling a MOUSEOVER or MOUSELEAVE message for a Label leads to a

canceling of the bubble mechanism, while button up and down, as well as

mouse moves, get relayed to the abstract element handling. The DoClick

gets passed to the abstract handler as well, but the ClickAction leads to

navigation to a malicious URL immediately. The reasoning for this is that

the URL of the Label is never set as a status text, and thus any URL the

Label navigates to is malicious by definition.

mod COMPLETE-MOUSE-RULES is

including STATE-MULTI-SET .

including GENERAL-MOUSE-RULES .

including ABSTRACT-ELEMENT .

including ANCHOR .

including BUTTON .

including FORM .

including IMAGE .

including INPUT-FIELD .

including LABEL .

var AL : ActionList . var O : ObjectName .

var M : MessageType .

eq [fireJScriptNonClick(O,M) ; AL] = [noOp ; AL] .

eq [fireJScriptClick(O) ; AL] = [noOp ; AL] .

endm

Here we have combined all the different element-handling mechanisms

into one module, and this is also the point where we define that any

JavaScript is simply ignored. Changing this here would lead to partial han-

dling of JavaScript by what is given here, but for full JavaScript handling

one would also need to take care to allow transformations of the whole DOM

tree at run time, which we do not support.

fmod NATSET is

including INT .

sort NatSet .

subsort Nat < NatSet .

210



op nil : -> NatSet .

op __ : NatSet NatSet -> NatSet [assoc comm id: nil] .

endfm

These are just the standard natural numbers with a set constructor that

we use later for the initial generation of all possible test cases.

mod WRAPPING is

including GENERAL-MOUSE-RULES .

including NATSET .

var SMS : StateMultiSet . var C : ClassName .

var KO : [ObjectName] .

op wrap : StateMultiSet -> StateMultiSet [frozen] .

eq wrap(SMS) = SMS .

Let us first explain the intention and effects of this wrapper. As wrap

is declared to be frozen, no rewrite underneath is possible. Every possible

rewrite has to happen at the top-level, that is, on a term of the form wrap(X).

Also, note that the equation given requires the state multiset SMS to be of

the appropriate sort, and that the terms we use to generate (exhaustively!)

the search space are only of the kind, and not of the sort. That is, as long as

there is at least one Any... term (see directly below) inside, this equation

will not be applicable.

op AnyClassName : -> [ClassName] .

op AnyUrl : -> [URL] .

op AnyContainer : NatSet -> [ObjectName] .

op AnyInputType : -> [InputType] .

op e : Nat -> ObjectName .

ceq className: C, container: KO

= className: C

if C =/= Button /\ C =/= Image /\ C =/= InputField .

ceq className: C, targetURL: AnyUrl

= className: C

if C =/= Anchor /\ C =/= Form .

ceq className: C , inputType: AnyInputType

211



= className: C

if C =/= InputField .

endm

The first four operators declared are all declared to go to the kind of

the sort they are there to create. This means that, until they have actually

been transformed to proper terms of their sort, the wrap cannot be dissolved.

The equations given here just remove irrelevant portions of the state, i.e., an

object that is neither a Button, an Image nor an InputField, then there is

no need to have a field for a container. Similarly, only Anchors and Forms

have a targetURL and only InputFieldss have an inputType.

The next module limits each connected component in the DOM tree to

have at most one anchor. To ensure at most one anchor per connected

component this module works on a copy of the DOM tree in which it checks

all elements the anchor in question have an upLink to (including transitively),

as well as walking down the graph. As there are no explicit links down, one is

added here and the DOM tree is obviously manipulated, which is no problem

as we are dealing with a copy.

mod ONE-ANCHOR-LIMIT is

including GENERAL-MOUSE-RULES .

var KOMS : [ObjectMultiSet] . var AL : ActionList .

vars U U’ : URL . vars O O’ O’’ : ObjectName .

vars KAtts KAtts’ : [AttributeSet] .

var KC : [ClassName] .

op noAnchorInCC : ObjectName StateMultiSet -> Bool .

op downLink:_ : ObjectName -> Attribute .

eq noAnchorInCC(O, [AL] {< O | KAtts > KOMS}

statusBar(U) memorizedUrl(U’))

= noAnchorInCC(O, {< O | downLink: O , KAtts > KOMS}).

eq noAnchorInCC(O, {< O | KAtts >}) = true .

First, everything that is not an object is dropped, as it is not relevant,

and a downLink to itself is added. That will be compared to other element’s

upLinks and thus used for a transitive descent. The next equation works if

there is only one element, then obviously there is no second anchor.

212



eq noAnchorInCC(O, {< O | upLink: O’ , KAtts >

< O’ | className: Anchor , KAtts’ >

KOMS})

= false .

ceq noAnchorInCC(O, {< O | upLink: O’ , KAtts >

< O’ | className: KC ,

upLink: O’’ , KAtts’ >

KOMS})

= noAnchorInCC(O, {< O | upLink: O’’ , KAtts >

KOMS})

if KC =/= Anchor .

Here the DOM tree is manipulated, in that the upLink of the object in

question is changed to its transitive upLink, which is its grandfather or an

even earlier ancestor. At the same time that intermediate element is dropped

as it has no further use.

eq noAnchorInCC(O,

{< O | downLink: O’’ , KAtts >

< O’ | upLink: O’’ , className: Anchor , KAtts’ >

KOMS})

= false .

ceq noAnchorInCC(O,

{< O | downLink: O’’ , KAtts >

< O’ | upLink: O’’ , className: KC , KAtts’ >

KOMS})

= noAnchorInCC(O, {< O | downLink: O’ , KAtts >

KOMS})

if KC =/= Anchor .

eq noAnchorInCC(O, {< O’ | KAtts > KOMS})

= true [owise] .

endm

In the first equation, if an element has an upLink that is an Anchor and

matches the current descent level (downLink) of the object, then we found

a second anchor in the connected component. If on the other hand that

element is not an anchor, then we change the downLink to be that element,

and drop that element from the tree and continue.

If none of the equations before the last one applied, then we have searched

and discarded the whole connected component and there is no second an-

213



chor in that connected component. Note how that equation is marked with

[owise], meaning it only applies if all other equations fail.

mod INPUTFIELD-ONLY-LEAF is

including GENERAL-MOUSE-RULES .

vars O O’ : ObjectName . var KAtts : [AttributeSet] .

var KSMS : [StateMultiSet] .

var KOMS : [ObjectMultiSet] .

op isLeaf : ObjectName StateMultiSet -> Bool .

eq isLeaf(O, {< O’ | upLink: O , KAtts > KOMS} KSMS)

= false .

eq isLeaf(O, KSMS)

= true [owise] .

endm

The InputField elements are only allowed as leaves, so we check if there

is any element O’ that has an upLink to the element O. If so, it is not a leaf,

otherwise it is.

mod ANCHOR-CREATION is

including WRAPPING .

including ONE-ANCHOR-LIMIT .

var O : ObjectName . var KAtts : [AttributeSet] .

var KSMS : [StateMultiSet] .

var KOMS : [ObjectMultiSet] .

crl wrap( {< O | className: AnyClassName , KAtts >

KOMS} KSMS)

=> wrap( {< O | className: Anchor , KAtts >

KOMS} KSMS)

if noAnchorInCC(O, {< O | className: AnyClassName ,

KAtts > KOMS} KSMS) .

rl wrap( {< O | className: Anchor ,

targetURL: AnyUrl , KAtts > KOMS} KSMS)

=> wrap( {< O | className: Anchor ,

targetURL: maliciousUrl , KAtts > KOMS}

KSMS) .

214



rl wrap( {< O | className: Anchor ,

targetURL: AnyUrl , KAtts > KOMS} KSMS)

=> wrap( {< O | className: Anchor ,

targetURL: wantedUrl , KAtts > KOMS}

KSMS) .

endm

To create an anchor we allow an element that is not defined (className:

AnyClassName) to become an anchor only if there is no other anchor in the

connected component, shown in the first (conditional) rule. If we have an

anchor, we allow, by the second and third rule, for the undefined URL to

become maliciousURL or wantedURL.

mod BUTTON-CREATION is

including WRAPPING .

var N : Nat . var NS : NatSet . var O : ObjectName .

vars KAtts KAtts’ : [AttributeSet] .

var KSMS : [StateMultiSet] .

var KOMS : [ObjectMultiSet] .

rl wrap(

{< O | className: AnyClassName ,

container: AnyContainer(N NS) , KAtts >

< e(N) | className: Form , KAtts’ >

KOMS}

KSMS)

=> wrap(

{< O | className: Button ,

container: e(N) , KAtts >

< e(N) | className: Form , KAtts’ >

KOMS}

KSMS) .

endm

For an element that is not yet fixed in the DOM tree (see container:

AnyContainer(N NS)) we allow it to become a Button if there is already a

Form that we can connect it to directly (container: e(N)). Also note that

technically it has to connect to the closest Form, which we do not enforce,

thus potentially allowing false positives that do not actually happen.

mod FORM-CREATION is

215



including WRAPPING .

var O : ObjectName . var KAtts : [AttributeSet] .

var KSMS : [StateMultiSet] .

var KOMS : [ObjectMultiSet] .

rl wrap( {< O | className: AnyClassName , KAtts >

KOMS} KSMS)

=> wrap( {< O | className: Form , KAtts > KOMS} KSMS) .

rl wrap( {< O | className: Form ,

targetURL: AnyUrl , KAtts > KOMS} KSMS)

=> wrap( {< O | className: Form ,

targetURL: maliciousUrl , KAtts > KOMS}

KSMS) .

rl wrap( {< O | className: Form ,

targetURL: AnyUrl , KAtts > KOMS} KSMS)

=> wrap( {< O | className: Form ,

targetURL: wantedUrl , KAtts > KOMS}

KSMS) .

endm

A Form can be created at any time, and naturally, its URL can be set to

maliciousUrl or wantedUrl, similar to an Anchor.

mod IMAGE-CREATION is

including WRAPPING .

var N : Nat . var NS : NatSet . var O : ObjectName .

vars KAtts KAtts’ : [AttributeSet] .

var KSMS : [StateMultiSet] .

var KOMS : [ObjectMultiSet] .

rl wrap(

{< O | className: AnyClassName ,

container: AnyContainer(N NS) , KAtts >

< e(N) | className: Anchor , KAtts’ >

KOMS}

KSMS)

=> wrap(

{< O | className: Image ,

container: e(N) , KAtts >

< e(N) | className: Anchor , KAtts’ >

216



KOMS}

KSMS) .

endm

For an Image, similarly to a button linking to a form, we require it to

link to an Anchor.

mod INPUT-FIELD-CREATION is

including WRAPPING .

including INPUTFIELD-ONLY-LEAF .

var N : Nat . var NS : NatSet . var O : ObjectName .

vars KAtts KAtts’ : [AttributeSet] .

var KSMS : [StateMultiSet] .

var KOMS : [ObjectMultiSet] .

crl wrap(

{< O | className: AnyClassName ,

container: AnyContainer(N NS) , KAtts >

< e(N) | className: Form , KAtts’ >

KOMS}

KSMS)

=> wrap(

{< O | className: InputField ,

container: e(N) , KAtts >

< e(N) | className: Form , KAtts’ >

KOMS}

KSMS)

if isLeaf(O, {< e(N) | className: Form , KAtts’ >

KOMS} KSMS) .

rl wrap( {< O | className: InputField ,

inputType: AnyInputType , KAtts >

KOMS} KSMS)

=> wrap( {< O | className: InputField ,

inputType: htmlInputButton , KAtts >

KOMS} KSMS) .

rl wrap( {< O | className: InputField ,

inputType: AnyInputType , KAtts >

KOMS} KSMS)

=> wrap( {< O | className: InputField ,

inputType: htmlInputImage , KAtts >

217



KOMS} KSMS) .

rl wrap( {< O | className: InputField ,

inputType: AnyInputType , KAtts >

KOMS} KSMS)

=> wrap( {< O | className: InputField ,

inputType: htmlInputSubmit , KAtts >

KOMS} KSMS) .

rl wrap( {< O | className: InputField ,

inputType: AnyInputType , KAtts >

KOMS} KSMS)

=> wrap( {< O | className: InputField ,

inputType: htmlInputText , KAtts >

KOMS} KSMS) .

endm

We allow creation of an InputField if there is already a Form it can be

linked to, and it has to be a leaf. Then, the remaining rules fix its inputType

to any one of the possibilities. Note that, technically, an InputField has to

connect to the nearest Form, but we relax this, potentially allowing false

positives, but they can be easily adjusted and actually do not appear in our

experiments.

mod LABEL-CREATION is

including WRAPPING .

var O : ObjectName . var KAtts : [AttributeSet] .

var KSMS : [StateMultiSet] .

var KOMS : [ObjectMultiSet] .

rl wrap( {< O | className: AnyClassName , KAtts >

KOMS} KSMS)

=> wrap( {< O | className: Label , KAtts > KOMS} KSMS).

endm

The creation of a Label is allowed for any element in the DOM tree

without restriction.

Next we put together all the different element-creation mechanisms as

explained above and link them together and initialize them.

mod CREATE-STARTS+TESTS is

218



including COMPLETE-MOUSE-RULES .

including WRAPPING .

including ANCHOR-CREATION .

including BUTTON-CREATION .

including FORM-CREATION .

including IMAGE-CREATION .

including INPUT-FIELD-CREATION .

including LABEL-CREATION .

vars O O’ : ObjectName . var AL : ActionList .

var KOMS : [ObjectMultiSet] . vars N N’ : Nat .

var NS : NatSet . var KSMS : [StateMultiSet] .

op createAnyObject : Nat ObjectName NatSet -> [Object].

eq createAnyObject(N, O, NS)

= < e(N) | className: AnyClassName ,

targetURL: AnyUrl, inputType: AnyInputType,

container: AnyContainer(NS), upLink: O > .

This creates an object with the name e(N), an upLink of O and a container

that is any element of the set NS.

Then a try consists of having the mouse over an object O for which we

trigger MOUSEOVER, so it updates the status bar and then moving from that

object to another object (possibly the same one), doing a manual inspection

by the user (modeled as eyeInspection and then clicking that object by

pressing and releasing the mouse button.

op try : ObjectName ObjectName -> ActionList .

eq try (O,O’)

= pumpMessage(O , MOUSEOVER) ;

onMouseMessage(O , MOUSEMOVE) ;

onMouseMessage(O’, MOUSEMOVE) ;

eyeInspection ;

onMouseMessage(O’, LBUTTONDOWN) ;

onMouseMessage(O’, LBUTTONUP) .

op try : NatSet -> ActionList .

rl wrap([try(N NS)] KSMS)

=> wrap(

try(e(N), e(N))

KSMS) .

219



rl wrap([try(N N’ NS)] KSMS)

=> wrap(

try(e(N), e(N’))

KSMS) .

We also allow a try from a set of naturals, which simply means to pick

two of them (or just one) and have a try from there.

For the initial state we hard code empty URLs into both the status bar

and the memorized URL. It uses a given list of actions on a given set of

objects.

op initialState : ActionList ObjectMultiSet

-> StateMultiSet .

eq initialState(AL, KOMS)

= [AL] {KOMS}

statusBar(emptyUrl) memorizedUrl(emptyUrl) .

endm

Now let us look at an example and what it means. For simplicity let

us just take a DOM tree with two elements that are connected, on which

we move the mouse from anywhere to anywhere. We of course are search-

ing from that start state to a final state in which the navigation goes to a

maliciousUrl while the user memorized wantedUrl. The initial state con-

sists of the list of actions as given by try and the two objects being created

with possible links between.

search

wrap(initialState(try(1 2),

createAnyObject(1, e(2), 2)

createAnyObject(2, nil, 1)))

=>!

[FollowHyperlink(maliciousUrl)]

memorizedUrl(wantedUrl)

X:StateMultiSet .

The result of that run is the following, which represents two possible

attacks that are very similar:

Solution 1 (state 1751)

X:StateMultiSet -->

statusBar(wantedUrl)

220



< e(1) | className: Anchor,

targetURL: wantedUrl,upLink: e(2) >

< e(2) | className: Label,upLink: nil >

Solution 2 (state 1752)

X:StateMultiSet -->

statusBar(wantedUrl)

< e(1) | className: Label,upLink: e(2) >

< e(2) | className: Anchor,

targetURL: wantedUrl,upLink: nil >

No more solutions.

states: 1765 rewrites: 20460 in 290ms cpu

(590ms real) (70551 rewrites/second)

The two possible states show the combination, in either order, of an

Anchor being a child or the parent of a Label.

Now, let us look at an example with three elements in one connected

component, which is created this way:

search

wrap(initialState(try(1 2 3),

createAnyObject(1, e(2), 2 3)

createAnyObject(2, e(3), 3)

createAnyObject(3, nil, nil)))

=>!

[FollowHyperlink(maliciousUrl)]

memorizedUrl(wantedUrl)

X:StateMultiSet .

There are actually 25 results, so let us pick one to explore in more detail:

Solution 20 (state 26386)

X:StateMultiSet -->

statusBar(wantedUrl)

< e(1) | className: InputField,upLink: e(2),

container: e(3),

inputType: htmlInputImage >

< e(2) | className: Anchor,

targetURL: wantedUrl, upLink: e(3) >

< e(3) | className: Form,

targetURL: maliciousUrl, upLink: nil >

221



This is actually the DOM tree layout that is presented in Figure 3.5, where

an InputField will take the click and navigate to its URL. On mousing over

though, the URL of the Anchor is being displayed.

For more examples, and their resulting output, please see the actual code,

respectively the results, in the files included in the code distribution.

A.2 Address Bar - Explained Specification

Whenever there is a boolean variable that, depending on its value, leads

to different possible outcomes we have modeled this not by including this

variable and setting it one way or the other, but rather by including two

rules: one that has the effect of the variable being true, the other having the

effect of the variable being false. As Maude will explore all possible paths

(via the search command), and the trace includes the names of the rules

used, we know which value was chosen for each variable relevant to an attack.

Then let us note that the parts of the code that are commented out

via ---(...) and inside they state **** We force this to be BOOL ****

because otherwise there is a bad trace. (where BOOL is TRUE or

FALSE) correspond to one of those choices. That means that the model

was first run with this code included and it allowed us to find attacks based

on this choice of value for the underlying boolean variable. We then removed

any thus identified attack causes, until the remaining model was safe and

no more attacks were found. Thus, we have found all possible attacks and

analyzing the associated traces as seen in Section 3.3 and shown in more

detail below is enough.

The file list-of-flags.txt includes all the variables, and its value,

which can lead to attacks.

We do not add a sort or wrapper for a BROWSERINSTANCE. As we are

only dealing with a single such instance, we can just include all its elements

directly into the state space as elements of sort StateElement. Similarly,

there is only one VIEW, so all its attributes are added to the general state

space as well.

fmod CLASSES is

extending QID .

222



extending INT .

sort Name .

subsort Qid < Name .

op n : Nat -> Name .

op nil : -> Name .

sort Frame .

sort FrameName .

op f : Name -> FrameName .

sort Markup .

sort MarkupName .

op m : Name -> MarkupName .

First we define that all quoted identifiers, Qid, e.g., ’a and ’b are names,

as well as the indexed name n(X) with X a natural number. Then, Frame

and Markup have names.

sort Url .

subsort Qid < Url .

op noUrl : -> Url .

op someHistoryUrl : Nat -> Url .

sort DomTree .

op nil : -> DomTree .

op dl : Url -> DomTree .

We define a Url to be a quoted identifier, the empty URL, or some pre-

viously visited URL parametric on a natural number.

sort Attribute .

sort AttributeSet .

subsort Attribute < AttributeSet .

op nil : -> AttributeSet .

op _,_ : AttributeSet AttributeSet

-> AttributeSet [assoc comm id: nil] .

The state is made up of sets of attributes in the standard way.

sort ObjectName .

subsorts FrameName MarkupName < ObjectName .

sort Object .

223



op <_|_> : ObjectName AttributeSet -> Object .

**** FRAME’s attributes

op currentMarkup:_ : MarkupName -> Attribute .

op pendingMarkup:_ : MarkupName -> Attribute .

**** MARKUP’s attributes

op url:_ : Url -> Attribute .

op frame:_ : FrameName -> Attribute .

op tree:_ : DomTree -> Attribute .

endfm

Both FrameNames and MarkupNames are object names, and an object is

the combination of a name and an attribute set. Potential attributes are the

current and pending markups, identified by name, the URL, the frame and

the associated DOM tree.

fmod EVENT is

including QID .

including CLASSES .

sort Event .

op startNavigation : Url FrameName -> Event .

op ready : MarkupName -> Event .

op ensure : -> Event .

op onPaint : -> Event .

op mark : Event -> Event .

endfm

Events are the start of navigation, the ready event for a specific markup,

and the painting on the screen. Note that we do single out events represen-

tative of downloading (by using mark on them), and allow other events to

bypass them, as the download can take a long time. See the METHOD-CALLS

module for details.

mod EVENTQUEUE is

including EVENT .

sort EventQueue .

subsort Event < EventQueue .

224



op noq : -> EventQueue .

op _,_ : EventQueue EventQueue

-> EventQueue [assoc id: noq] .

endm

The queue of events is a standard queue that is associative and has an

empty neutral element.

fmod METHOD-DEF is

including CLASSES .

sort Method .

op FollowHyperlink : Url FrameName -> Method .

op PostMan : Url FrameName -> Method .

op SetInteractive : MarkupName -> Method .

op NavigationComplete : FrameName -> Method .

op FireNavigationComplete : FrameName -> Method .

All the expected function calls are listed as Method elements above, see

Figure 3.9 in Chapter 3.3.2.

op GetPidlForDisplay : -> Method .

op SwitchMarkup : MarkupName FrameName -> Method .

Switching the markup requires a new markup, identified by its name, and

the frame this switch happens on, also identified by its name.

op EnsureSize : -> Method .

op EnsureView : -> Method .

op RenderView : -> Method .

op HistoryBack : -> Method .

op BROWSERINSTANCE::Travel : Int -> Method .

op CTravelLog::Travel : Int -> Method .

op Invoke : -> Method .

op LoadHistory : -> Method .

op CreateMarkup : Bool -> Method .

op CreateFrameHelper : MarkupName -> Method .

All these are methods as seen in Figure 3.9 in Chapter 3.3.2.

sort HelpingMethod .

subsort HelpingMethod < Method .

225



op SetInteractive-BoolExp : MarkupName

-> HelpingMethod .

op FireNavigationComplete-pidl : Url

-> HelpingMethod .

op FireNavigationComplete-!fViewActivated : Url

-> HelpingMethod .

op SetAddressBar : Url -> HelpingMethod .

op SwitchMarkup-PrimarySwitch : MarkupName FrameName

-> HelpingMethod .

op SwitchMarkup-AllButLastIf :

MarkupName FrameName Bool -> HelpingMethod .

op SwitchMarkup-SwapInNewMarkup :

MarkupName FrameName Bool -> HelpingMethod .

op Invoke-PostEvent : -> HelpingMethod .

op CreateMarkup-PrimaryFrame-pMarkup->frame :

MarkupName -> HelpingMethod .

endfm

Now, the methods above are not actual methods in the source code of

IE, but partial versions of them. Generally, the part before the “-” is the

method this happens in, and the part after the “-” shows which path inside

it went down.

fmod METHOD-LIST is

including METHOD-DEF .

sort MethodList .

subsort Method < MethodList .

op nop : -> MethodList .

op _;_ : MethodList MethodList

-> MethodList [assoc id: nop] .

endfm

The execution of methods happens in order, so we define lists of methods,

as usual, being associative.

mod STATE is

including EVENTQUEUE .

including METHOD-LIST .

sort State .

sort StateElement .

226



subsort StateElement < State .

op nil : -> State .

op __ : State State -> State [assoc comm id: nil] .

sort ObjectMultiSet .

subsort Object < ObjectMultiSet .

op nil : -> ObjectMultiSet .

op __ : ObjectMultiSet ObjectMultiSet

-> ObjectMultiSet [assoc comm id: nil] .

op {_} : ObjectMultiSet -> StateElement .

op [_] : EventQueue -> StateElement .

op [_] : MethodList -> StateElement .

The state consists of the event queue, and the list of methods being called

as well as all of the objects that are wrapped inside { }.

op freshNameCounter : Nat -> StateElement .

op historyAccesses : Nat -> StateElement .

op painted : Bool -> StateElement .

The first two elements are counters internal to the model that are used to

create new, fresh names. The painted element is used to remember whether

an onPaint has already been injected at the very end.

op primaryFrame : FrameName -> StateElement .

op urlOfView : Url -> StateElement .

The above two elements are modeling the primary frame we are looking

at as well as the URL of the current view. Technically speaking it should be

indirected twice, that is, the browser instance has view, and that view has

an associated URL. But, as we noted above that we are limiting ourselves to

just one browser instance with only one view, we can avoid the extra hassle.

op addressBar : Url -> StateElement .

op urlPaintedOnScreen : Url -> StateElement .

endm

Finally, this represents the content of the address bar, respectively the

URL where the content of the screen came from.

In the following, whenever there are two [] wrappers, the first will contain

227



the method list, separated internally by ; while the second will be the event

queue, separated by , internally.

mod METHOD-CALLS is

including STATE .

vars S S’ : State . vars U U’ : Url .

vars Q Q’ : EventQueue . vars ML ML’ : MethodList .

vars F F’ : FrameName . vars N N’ : Nat .

vars Atts Atts’ : AttributeSet .

vars M M’ M’’ : MarkupName . vars D D’ : DomTree .

vars OMS OMS’ : ObjectMultiSet . vars B B’ : Bool .

vars I I’ : Int .

eq [FollowHyperlink(U, F) ; ML] [Q]

= [ML] [Q, startNavigation(U, F)] .

If the next method call is a FollowHyperlink then that is replaced by

adding a startNavigation event with the same arguments in the event

queue, see Figure 3.9 in Chapter 3.3.2.

eq [PostMan(U, F) ; ML] [Q] freshNameCounter(N)

{< F | pendingMarkup: M , Atts > OMS}

= [ML] [Q, mark(ready(m(n(N))))]

freshNameCounter(N + 1)

{< F | pendingMarkup: m(n(N)) , Atts >

< m(n(N)) | frame: F , url: U , tree: nil > OMS} .

A PostMan call requires an appropriate frame for which it will change

the pendingMarkup, increase the counter of fresh names, add a new markup,

with the specified URL, to the list of objects and put a ready event into

the queue. Note that that event is marked, meaning it can be delayed, to

simulate network transfer times.

---(

**** We force this to be FALSE

**** because otherwise there is a bad trace.

rl [_fIsInSetInteractive-TRUE] :

[SetInteractive(M) ; ML]

=> [ML] .

)

228



rl [_fIsInSetInteractive-FALSE] :

[SetInteractive(M) ; ML]

{< M | frame: F , Atts > OMS}

=> [SwitchMarkup(M, F) ; SetInteractive-BoolExp(M) ;

ML] {< M | frame: F , Atts > OMS} .

The first case simulates the possibility of immediately exiting method

SetInteractive, by simply dropping it from the method list. This would

happen in case of re-entry. It is commented out, as with that code active it is

possible to get an attack because primaryFrame->currentMarkup == NULL

is possible.

The other case is where the function properly executes, which leads to a

call of SwitchMarkup and SetInteractive-BoolExp.

rl [BOOLEXP1-TRUE] :

[SetInteractive-BoolExp(M) ; ML]

{< M | frame: F , Atts > OMS}

=> [NavigationComplete(F) ; ML]

{< M | frame: F , Atts > OMS} .

---(

**** We force this to be TRUE

**** because otherwise there is a bad trace.

rl [BOOLEXP1-FALSE] :

[SetInteractive-BoolExp(M) ; ML]

=> [ML] .

)

In turn, SetInteractive-BoolExp goes to NavigationComplete in the

proper execution with BOOLEXP1 being true.

Alternatively, if BOOLEXP1 is false, the method aborts right away and

nothing happens. This can lead to a different potential attack scenario.

---(

**** We force this to be FALSE

**** because otherwise there is a bad trace.

rl [BOOLEXP2-TRUE] :

[NavigationComplete(F) ; ML]

=> [ML] .

)

rl [BOOLEXP2-FALSE] :

229



[NavigationComplete(F) ; ML]

=> [FireNavigationComplete(F) ; ML] .

Under the condition that BOOLEXP2 is true there is a silent return of

NavigationComplete, which leads to an attack; otherwise normal execution

continues and FireNavigationComplete is called as expected.

rl [bstrUrl-TRUE] :

[FireNavigationComplete(F) ; ML]

{< F | currentMarkup: M , Atts >

< M | url: U , Atts’ > OMS}

=> [GetPidlForDisplay ;

FireNavigationComplete-pidl(U) ; ML]

{< F | currentMarkup: M , Atts >

< M | url: U , Atts’ > OMS} .

---(

**** We force this to be TRUE

**** because otherwise there is a bad trace.

rl [bstrUrl-FALSE] :

[FireNavigationComplete(F) ; ML]

=> [ML] .

)

For the bstrURL condition we have a silent return if it is false, leading to

issues, and regular execution otherwise.

rl [pidl-TRUE] :

[FireNavigationComplete-pidl(U) ; ML]

=> [FireNavigationComplete-!fViewActivated(U) ; ML] .

---(

**** We force this to be TRUE

**** because otherwise there is a bad trace.

rl [pidl-FALSE] :

[FireNavigationComplete-pidl(U) ; ML]

=> [ML] .

)

If the pidl condition is false, there is another silent return; otherwise the

FireNavigationComplete method is executed further. The decision about

the pidl condition indeed happens only here, and it does not happen in

GetPidlForDisplay.

230



rl [!fViewActivated-TRUE] :

[FireNavigationComplete-!fViewActivated(U) ; ML]

=> [SetAddressBar(U) ; ML] .

---(

**** We force this to be TRUE

**** because otherwise there is a bad trace.

rl [!fViewActivated-FALSE] :

[FireNavigationComplete-!fViewActivated(U) ; ML]

=> [ML] .

)

The !fViewActivated condition needs to be true for regular execution,

calling SetAddressBar, otherwise it returns silently, leading to an attack

and that is excluded here. Note that all of the above were rules, so Maude’s

search space exploration would explore all possibilities, until we took them

out.

eq [GetPidlForDisplay ; ML]

= [ML] .

rl [SetAddressBar] :

[SetAddressBar(U) ; ML] addressBar(U’)

=> [ML] addressBar(U) .

The SetAddressBar method actually does set the address bar, as ex-

pected.

---(

**** We force this to be FALSE

**** because otherwise there is a bad trace.

rl [!pMarkupNew->_fWindowPending-TRUE] :

[SwitchMarkup(M, F) ; ML]

=> [ML] .

)

rl [!pMarkupNew->_fWindowPending-FALSE] :

[SwitchMarkup(M, F) ; ML]

=> [SwitchMarkup-PrimarySwitch(M, F) ; ML] .

For !pMarkupNew-> fWindowPending we remove the true case as that

silently returns from the SwitchMarkup method, leading to trouble. Oth-

erwise it continues execution, having passed the first condition check. The

231



potential trouble in the first case is that with HistoryBack the case that

primaryFrame->currentMarkup == NULL is possible.

eq [SwitchMarkup-PrimarySwitch(M, F) ; ML]

primaryFrame(F)

= [SwitchMarkup-AllButLastIf(M, F, true) ; ML]

primaryFrame(F) .

ceq [SwitchMarkup-PrimarySwitch(M, F) ; ML]

primaryFrame(F’)

= [SwitchMarkup-AllButLastIf(M, F, false) ; ML]

primaryFrame(F’)

if F =/= F’ .

These equations just check if the SwitchMarkup method has been called

on the primary frame, and note that as true or false in a third argument

of SwitchMarkup-AllButLastIf.

---(

**** We force this to be FALSE

**** because otherwise there is a bad trace.

rl [someIfStopsSwitchMarkup-TRUE] :

[SwitchMarkup-AllButLastIf(M, F, B) ; ML]

=> [ML] .

)

rl [someIfStopsSwitchMarkup-FALSE] :

[SwitchMarkup-AllButLastIf(M, F, B) ; ML]

=> [SwitchMarkup-SwapInNewMarkup(M, F, B) ; ML] .

The first case here represents the case when some of the remaining con-

ditions are responsible for making it silently return; otherwise the execution

continues.

eq [SwitchMarkup-SwapInNewMarkup(M, F, true) ; ML] [Q]

{< F | currentMarkup: M’ ,

pendingMarkup: M’’ , Atts > OMS}

= [ML] [Q , ensure]

{< F | currentMarkup: M ,

pendingMarkup: m(nil) , Atts > OMS} .

eq [SwitchMarkup-SwapInNewMarkup(M, F, false) ; ML]

{< F | currentMarkup: M’ ,

232



pendingMarkup: M’’ , Atts > OMS}

= [ML]

{< F | currentMarkup: M ,

pendingMarkup: m(nil) , Atts > OMS} .

Switching in a new markup will add ensure to the event queue if it is

happening on the primary frame; otherwise it will not.

rl [IsActiveEnsureSize-TRUE] :

[EnsureSize ; ML] urlOfView(U) primaryFrame(F)

{< F | currentMarkup: M , Atts >

< M | url: U’ , Atts’ > OMS}

=> [ML] urlOfView(U’) primaryFrame(F)

{< F | currentMarkup: M , Atts >

< M | url: U’ , Atts’ > OMS} .

---(

**** We force this to be TRUE

**** because otherwise there is a bad trace.

rl [IsActiveEnsureSize-FALSE] :

[EnsureSize ; ML]

=> [ML] .

)

Depending on IsActiveEnsureSize the EnsureSize method can silently

return, leading to an attack, or change the content that will be made visible

on screen shortly. In case you are wondering how this would lead to an

attack, then note that in the attack case the things displayed on screen are

not changing, but independently of this the URL displayed in the address

bar will!

rl [IsActiveEnsureView-TRUE] :

[EnsureView ; ML]

=> [EnsureSize ; ML] .

---(

**** We force this to be TRUE

**** because otherwise there is a bad trace.

rl [IsActiveEnsureView-False] :

[EnsureView ; ML]

=> [ML] .

)

233



From EnsureView either EnsureSize gets called, or in the case that

IsActiveEnsureView is false it just returns, leading to an attack.

rl [pRenderSurface!=NULL-TRUE] :

[RenderView ; ML]

urlOfView(U) urlPaintedOnScreen(U’)

=> [ML] urlOfView(U) urlPaintedOnScreen(U) .

---(

**** We force this to be TRUE

**** because otherwise there is a bad trace.

rl [pRenderSurface!=NULL-FALSE] :

[RenderView ; ML]

=> [ML] .

)

In RenderView the content of urlOfView will be painted on the screen,

or if pRenderSurface!=NULL is false it will just return. Again leading to the

attack mentioned just before and thus excluded.

eq [HistoryBack ; ML]

= [BROWSERINSTANCE::Travel(-1) ; ML] .

rl [pTravelLog&&_pBrowserSvc-TRUE-and-LPAREN_

fViewLinkedInWebOC-FALSE-or-hr-FALSE-RPAREN] :

[BROWSERINSTANCE::Travel(I) ; ML]

=> [CTravelLog::Travel(I) ; ML] .

rl [LPAREN_pTravelLog&&_pBrowserSvc-TRUE-and-

LPAREN_fViewLinkedInWebOC-FALSE-or-

hr-FALSE-RPAREN-RPAREN--FALSE] :

[BROWSERINSTANCE::Travel(I) ; ML]

=> [ML] .

Here, HistoryBack becomes BROWSERINSTANCE::Trave(-1). Then,

there is two possible outcomes to BROWSERINSTANCE::Travel: it can either

execute and call CTravelLog::Travel or just abort.

rl [SUCCEEDED-TRUE] :

[CTravelLog::Travel(I) ; ML]

=> [Invoke ; ML] .

rl [SUCCEEDED-FALSE] :

234



[CTravelLog::Travel(I) ; ML]

=> [ML] .

Depending on SUCCEEDED the travel will call Invoke or return.

rl [hGlobal!=NULL&&SUCCEEDED-TRUE] :

[Invoke ; ML]

=> [LoadHistory ; Invoke-PostEvent ; ML] .

rl [hGlobal!=NULL&&SUCCEEDED-FALSE] :

[Invoke ; ML]

=> [ML] .

To continue, Invoke can either call LoadHistory ; Invoke-PostEvent

or return.

eq [Invoke-PostEvent ; ML] [Q]

primaryFrame(F) historyAccesses(N)

= [ML] [Q , startNavigation(someHistoryUrl(N), F)]

primaryFrame(F) historyAccesses(N + 1) .

rl [pstm&&SUCCEEDED-TRUE-and-LPAREN_pHTMLDocument-FALSE

-or-_dwDocFlags&&DOCFLAC_...-FALSE-RPAREN] :

[LoadHistory ; ML]

=> [CreateMarkup(true) ; ML] .

rl [LPARENpstm&&SUCCEEDED-TRUE-and-LPAREN_

pHTMLDocument-FALSE-or-_dwDocFlags&&

DOCFLAC_...-FALSE-RPAREN-RPAREN--FALSE] :

[LoadHistory ; ML]

=> [ML] .

Invoke-PostEvent will then add a new event StartNavigation to the

event queue. Depending on the relevant condition, LoadHistory will either

call CreateMarkup or silently return.

rl [!pMarkup-TRUE] :

[CreateMarkup(B) ; ML]

=> [ML] .

rl [!pMarkup-FALSE] :

[CreateMarkup(true) ; ML] freshNameCounter(N)

{OMS}

=> [CreateFrameHelper(m(n(N))) ;

235



CreateMarkup-PrimaryFrame-pMarkup->frame(m(n(N))) ;

ML]

freshNameCounter(N + 1)

{< m(n(N)) | url: noUrl , frame: f(nil) ,

tree: nil > OMS} .

rl [!pMarkup-FALSE] :

[CreateMarkup(false) ; ML] freshNameCounter(N)

{OMS}

=> [ML] freshNameCounter(N + 1)

{< m(n(N)) | url: noUrl , frame: f(nil) ,

tree: nil > OMS} .

In the first rule above, !pMarkup being true, the system is out of memory,

so nothing has been created. In the second and third rule a new markup is

created. Only in the second rule a method is called that will create an asso-

ciated frame, and then the rest of the CreateMarkup method gets executed.

In the third rule there is just a return from that method.

eq [CreateMarkup-PrimaryFrame-pMarkup->frame(M) ; ML]

primaryFrame(F’)

{< M | frame: F , Atts > OMS}

= [ML] primaryFrame(F)

{< M | frame: F , Atts > OMS} .

This is the continuation of CreateMarkup, which simply changes the pri-

mary frame to that call’s argument.

---(

**** We force this to be FALSE

**** because otherwise there is a bad trace.

rl [!pFrame-TRUE] :

[CreateFrameHelper(M) ; ML]

=> [ML] .

)

rl [!pFrame-FALSE] :

[CreateFrameHelper(M) ; ML] freshNameCounter(N)

{< M | frame: F , Atts > OMS}

=> [ML] freshNameCounter(N + 1)

{< M | frame: f(n(N)) , Atts >

< f(n(N)) | currentMarkup: m(nil) ,

pendingMarkup: M > OMS} .

236



endm

In the first rule we are out of memory, and thus an attack is possible as it

just silently returns. The second one is the creation of the frame associated

to the markup.

Now we have covered all the method calls, so it is time to switch over to

the handling of the events.

mod EVENT-HANDLING is

including STATE .

vars S S’ : State . vars U U’ : Url .

vars Q Q’ : EventQueue . vars ML ML’ : MethodList .

vars F F’ : FrameName . vars N N’ : Nat .

vars Atts Atts’ : AttributeSet .

vars M M’ : MarkupName . vars D D’ : DomTree .

vars OMS OMS’ : ObjectMultiSet . vars E E’ : Event .

eq [startNavigation(U, F) , Q] [nop] S

= [Q] [PostMan(U, F)] S .

The startNavigation event will call the PostMan method, if the method

call list is empty, and it is the first event in the queue.

eq [ready(M) , Q] [nop]

{< M | tree: D , url: U , Atts > OMS} S

= [Q] [SetInteractive(M)]

{< M | tree: dl(U), url: U , Atts > OMS} S .

eq [ensure , Q] [nop] S

= [Q] [EnsureView] S .

eq [onPaint , Q] [nop] S

= [Q] [RenderView] S .

When ready is the first event (and is not marked, see below) the DOM

tree associated to the markup parameter of ready will be downloaded from its

URL, shown as dl(U). The tree it gets put in has originally been initialized

with the empty DOM tree.

The ensure event calls the EnsureView method, while the onPaint event

triggers the RenderView method.

237



rl [marked-event-delayed] :

[mark(E) , E’ , Q]

=> [E’ , mark(E) , Q] .

rl [marked-event-happens] :

[mark(E) , Q]

=> [E , Q] .

Marked events, shown by mark, can be delayed. This means that the

event following them can be moved in front of the marked event, or the mark

can be removed, which means the event is now ready for execution.

eq [nop] [noq] painted(false)

= [nop] [onPaint] painted(true) .

endm

When there are no more method calls and no more events in the event

queue, and the screen has not yet been painted, then the onPaint event is

added once.

Next we define the possible starting points for execution and define what

it means for a state to be a good state.

mod CREATE-ALL-STARTS is

including METHOD-CALLS .

including EVENT-HANDLING .

op goodState : State -> Bool .

op badState : State -> Bool .

vars S S’ : State . vars U U’ : Url .

vars Q Q’ : EventQueue . vars ML ML’ : MethodList .

vars F F’ : FrameName . vars N N’ : Nat .

vars Atts Atts’ : AttributeSet .

vars M M’ M’’ : MarkupName . vars D D’ : DomTree .

vars OMS OMS’ : ObjectMultiSet .

vars B B’ : Bool . vars I I’ : Int .

eq badState(S) = not(goodState(S)) .

eq goodState(addressBar(U) urlOfView(U)

urlPaintedOnScreen(U) primaryFrame(F)

{< F | currentMarkup: M , Atts >

< M | url: U , tree: dl(U) , Atts’ >

238



OMS} S)

= true .

eq goodState(S)

= false [owise] .

More specifically, a good state is a state where the address bar matches

with what is painted on the screen, i.e., the content on the screen is down-

loaded from the URL in the address bar. Also, the internal urlOfView is the

same and the URL of the current markup of the primary frame matches it

as well.

In the following FH stands for “follow hyperlink” while HB stands for

“history back”.

op consistent-state : -> State .

op startFH : -> State .

op startHB : -> State .

op startFH-HB : -> State .

op startHB-FH : -> State .

op startFH-FH : -> State .

op startHB-HB : -> State .

eq consistent-state

= primaryFrame(f(’f0)) [noq]

{ < f(’f0) | currentMarkup: m(’m0) ,

pendingMarkup: m(nil) >

< m(’m0) | url: ’urlA , frame: f(’f0) ,

tree: dl(’urlA) > }

addressBar(’urlA) urlOfView(’urlA)

urlPaintedOnScreen(’urlA) freshNameCounter(0)

historyAccesses(0) painted(false) .

The consistent state from which all our experiments start is given above.

The starting state is then customized by the method call given, see below.

eq startFH

= consistent-state

[FollowHyperlink(’urlB, f(’f0))] .

eq startHB

= consistent-state

[HistoryBack] .

239



eq startFH-HB

= consistent-state

[FollowHyperlink(’urlB, f(’f0)) ; HistoryBack] .

eq startHB-FH

= consistent-state

[HistoryBack ; FollowHyperlink(’urlB, f(’f0))] .

eq startFH-FH

= consistent-state

[FollowHyperlink(’urlB, f(’f0)) ;

FollowHyperlink(’urlC, f(’f0))] .

eq startHB-HB

= consistent-state

[HistoryBack ; HistoryBack] .

endm

We either only give one command to the browser, like in the first case,

or two commands that can be any combination of following a hyperlink and

navigating back in the history.

Let us look back at Table 3.5 in Chapter 3.3.4 and let us pick the sce-

nario based on condition No. 2, which is a silent return of the method

FireNavigationComplete. We find it as an attack scenario in the first

search, with just one call to FollowHyperlink, as such:

search startFH =>! S:State such that badState(S:State).

This uses the rule we have labeled with bstrUrl-FALSE, which is the

condition triggering this silent return and is based on a bad format of the

URL. The search result we get is the following

state 0, State:

{< f(’f0) | currentMarkup: m(’m0),

pendingMarkup: m(n(0)) >

< m(’m0) | url: ’urlA,frame: f(’f0),tree: dl(’urlA) >

< m(n(0)) | url: ’urlB, frame: f(’f0),tree: nil >}

[mark(ready(m(n(0))))] [nop]

freshNameCounter(1) historyAccesses(0)

painted(false) primaryFrame(f(’f0))

addressBar(’urlA)

240



urlOfView(’urlA) urlPaintedOnScreen(’urlA)

===[ rl [mark(E:Event),Q] => [E:Event,Q]

[label marked-event-happens] . ]===>

===[ rl {OMS < M | Atts,frame: F >}

[SetInteractive(M) ; ML] =>

{OMS < M | Atts,frame: F >}

[SwitchMarkup(M, F) ;

SetInteractive-BoolExp(M) ; ML]

[label _fIsInSetInteractive-FALSE] . ]===>

===[ rl [SwitchMarkup(M, F) ; ML] =>

[SwitchMarkup-PrimarySwitch(M, F) ; ML]

[label !pMarkupNew->_fWindowPending-FALSE] . ]===>

===[ rl [SwitchMarkup-AllButLastIf(M, F, B) ; ML] =>

[SwitchMarkup-SwapInNewMarkup(M, F, B) ; ML]

[label someIfStopsSwitchMarkup-FALSE] . ]===>

===[ rl {OMS < M | Atts,frame: F >}

[SetInteractive-BoolExp(M) ; ML] =>

{OMS < M | Atts,frame: F >}

[NavigateComplete(F) ; ML]

[label BOOLEXP1-TRUE] . ]===>

===[ rl [NavigateComplete(F) ; ML] =>

[FireNavigateComplete ; ML]

[label BOOLEXP2-FALSE] . ]===>

===[ rl [FireNavigateComplete ; ML] => [ML]

The next rule being applied (labeled bstrUrl-FALSE) simply drops the

FireNavigateComplete, which is a silent return that does not change the

address bar URL ultimately, while the content is changed. This is the crucial

step in this execution.

[label bstrUrl-FALSE] . ]===>

===[ rl [EnsureView ; ML] => [EnsureSize ; ML]

[label IsActiveEnsureView-TRUE] . ]===>

===[ rl {OMS < F | Atts,currentMarkup: M >

< M | Atts’,url: U’ >} [EnsureSize ; ML]

primaryFrame(F) urlOfView(U) =>

[ML] urlOfView(U’)

{< F | Atts, currentMarkup: M > OMS

< M | Atts’,url: U’ >} primaryFrame(F)

[label IsActiveEnsureSize-TRUE] . ]===>

===[ rl [RenderView ; ML]

urlOfView(U) urlPaintedOnScreen(U’) =>

[ML] urlOfView(U) urlPaintedOnScreen(U)

[label pRenderSurface!=NULL-TRUE] . ]===>

241



state 22, State:

{< f(’f0) | currentMarkup: m(n(0)),

pendingMarkup: m(nil) >

< m(’m0) | url: ’urlA,frame: f(’f0),

tree: dl(’urlA) >

< m(n(0)) | url: ’urlB, frame: f(’f0),

tree: dl(’urlB) >}

[noq] [nop]

freshNameCounter(1) historyAccesses(0)

painted(true) primaryFrame(f(’f0))

addressBar(’urlA)

urlOfView(’urlB) urlPaintedOnScreen(’urlB)

As you can see in the final state, the URL in the address bar has not

been updated according to the rest of the execution, but the content of the

page the user sees did update. Thus, changing the content and changing the

address bar URL need to be linked, or even be one atomic action.

242



APPENDIX B

EXPLAINED MAUDE SPECIFICATION
OF THE IBOS MODEL

In this chapter we list and describe the detailed specification of the Maude

model of the IBOS browser. All the data source files are available at [112].

We are using Maude 2.6 for all of these experiments.

First, we explain the model architecture of IBOS in Section B.1. Then we

explain the extension for and analysis of the display memory in Section B.3.

The analysis for the address bar and SOP will be described in Section B.4.

In this section, whenever we write kernel we are referring to the IBOS ker-

nel. We will refer to the underlying L4KA::Pistachio microkernel operating

system with more detail.

B.1 IBOS - Model Architecture

The code explained in this section is found in file ibos.maude. You can see

the overall state structure in Figure 4.2.

We start with process identifiers, which are given in module PROC-ID. As

there is only a single kernel, and a single web app manager, the process id

kernel-id, respectively webappmgr-id will be that one object’s id. On the

other hand, webapp-id and network-id are only place holders, which are

used in policies exclusively. Any actual web app or network process will have

a natural number as id, which is between 1024 and 1055 for web apps, and

between 256 and 1023 for network processes. Note that the limitation to 32

web apps is due to memory concerns in the IBOS implementation.

mod PROC-ID is

including CONFIGURATION .

protecting INT .

sort ProcId .

243



subsort Int < ProcId < Oid .

op kernel-id : -> ProcId .

op webappmgr-id : -> ProcId .

op webapp-id : -> ProcId .

op network-id : -> ProcId .

op cache-id : -> ProcId .

op cookie-id : -> ProcId .

op vesafb-server-id : -> ProcId .

op mouse-server-id : -> ProcId .

op network-server-id : -> ProcId .

op dns-server-id : -> ProcId .

op ui-id : -> ProcId .

op mouse-intr-id : -> ProcId .

op network-intr-id : -> ProcId .

op storage-id : -> ProcId .

Now all elements in our object soup are going to be processes, identified

by proc as their class id, with the exception of the kernel, addressed as <

kernel-id : kernel |, the NIC, which will be addressed as < 0 : nic

| as there is only one, and the DMA memory used for communication from

network process to NIC, addressed as < N : nic |, with N the process id of

that network process.

op proc : -> Cid [ctor] .

op kernel : -> Cid [ctor] .

op nic : -> Cid [ctor] .

op mem : -> Cid [ctor] .

endm

There are different types of messages as well as values for messages, shown

in the MSG-TYPE module.

mod MSG-TYPE is

protecting INT .

sort MsgType .

sort MsgVal .

subsort Int < MsgVal .

op MSG-NEW-URL : -> MsgType .

op MSG-FETCH-URL : -> MsgType .

244



op MSG-RETURN-URL : -> MsgType .

op MSG-FETCH-URL-ABORT : -> MsgType .

op MSG-SWITCH-TAB : -> MsgType .

op MSG-RETURN-URL-METADATA : -> MsgType .

op MSG-COOKIE-SET : -> MsgType .

op MSG-COOKIE-GET : -> MsgType .

op MSG-COOKIE-GET-RETURN : -> MsgType .

op MSG-DOM-COOKIE-SET : -> MsgType .

op MSG-DOM-COOKIE-GET : -> MsgType .

op MSG-DOM-COOKIE-GET-RETURN : -> MsgType .

op MSG-WRITE-FILE : -> MsgType .

op MSG-READ-FILE : -> MsgType .

op MSG-READ-FILE-RETURN : -> MsgType .

op MSG-DOWNLOAD-INFO : -> MsgType .

op MSG-WEBAPP-MSG : -> MsgType .

op MSG-UI-MSG : -> MsgType .

endm

The different types of system calls that are available due to using

L4Ka::Pistachio. The system call OPOS-SYSCALL-FD-SEND-MESSAGE is the

one that is used most often.

mod SYSCALL-TYPE is

sort SyscallType .

op OPOS-SYSCALL-FD-SEND-MESSAGE : -> SyscallType .

op OPOS-SYSCALL-CREATE-PROCESS : -> SyscallType .

op OPOS-SYSCALL-REGISTER-IRQ-THREAD : -> SyscallType .

op OPOS-SYSCALL-GET-RESERVE-MEM : -> SyscallType .

op OPOS-SYSCALL-GET-SERVICE-TID : -> SyscallType .

op OPOS-SYSCALL-REGISTER-SERVICE : -> SyscallType .

op OPOS-SYSCALL-ALLOCATE-DMA-MEMORY : -> SyscallType .

op OPOS-SYSCALL-POLL : -> SyscallType .

op OPOS-SYSCALL-FD-RECEIVE-MSSAGE : -> SyscallType .

op OPOS-SYSCALL-E1000-SEND-ETHERNET-PACKET :

-> SyscallType .

op OPOS-SYSCALL-E1000-PARSE-INTERRUPT-RESULT :

-> SyscallType .

op OPOS-SYSCALL-E1000-IF-UP : -> SyscallType .

op OPOS-SYSCALL-REGISTER-SUBSYSTEM : -> SyscallType .

op OPOS-SYSCALL-GET-FB-MEMORY : -> SyscallType .

245



op OPOS-SYSCALL-IS-WINDOW-MGR : -> SyscallType .

op OPOS-SYSCALL-NET-IS-PORT-AVAILABLE : -> SyscallType .

op OPOS-SYSCALL-NET-ALLOCATE-PORT : -> SyscallType .

op OPOS-SYSCALL-NET-FREE-PORT : -> SyscallType .

op OPOS-SYSCALL-TOUCH : -> SyscallType .

endm

The module PAYLOAD includes the wrapper for browser level messages,

called payload, which takes seven arguments. The first two arguments are

of type Oid, representing the sender and receiver of the message. Note again

that the sender Oid is enforced to be correct by the kernel when the message

is passed on. In some cases the receiver Oid can be changed by the kernel as

well. The type of the message, of sort MsgType, is the next argument, with

a more specific message value MsgVal if needed. The String argument will

take, e.g., the URL of any message that has one. We are going to ignore

the typed and untyped argument, but they could store additional data, if

needed.

mod PAYLOAD is

protecting MSG-TYPE .

protecting PROC-ID .

protecting STRING .

sort typed .

op mtTyped : -> typed [ctor] .

sort untyped .

op mtUntyped : -> untyped [ctor] .

sort Payload .

op payload : Oid Oid MsgType MsgVal String typed untyped

-> Payload [ctor] .

endm

We are using pipes for different objects to communicate with each other.

Each pipe is bidirectional between the two objects it connects. Note that for

all pipes one of those objects is always the kernel, as all communication is

forced to go through the kernel.

Therefore, pipe is an operator that is used as object class, Cid. Each

pipe will be identified by an id, which is the same as that of the process the

pipe is connecting to the kernel. The incoming messages are stored inside

the wrapper fromKernel, while outgoing messages are put into the wrapper

toKernel. Messages are stored in a list of messages, MessageList, while

246



each message itself is made up of a system call and the payload.

mod MSG-PIPE-BASICS is

including CONFIGURATION .

protecting PROC-ID .

protecting MSG-TYPE .

protecting SYSCALL-TYPE .

protecting PAYLOAD .

protecting STRING .

protecting INT .

op pipe : -> Cid [ctor] .

op fromKernel : MessageList -> Attribute [ctor] .

op toKernel : MessageList -> Attribute [ctor] .

sort Message .

sort MessageList .

subsort Message < MessageList .

op msg : SyscallType Payload -> Message [ctor] .

op mt : -> Message [ctor] .

op _,_ : MessageList MessageList

-> MessageList [ctor assoc id: mt] .

A helper function is defined here, that given an identifier and a message

changes the sender identifier in that message’s payload to the given identifier.

op changeRecipient : Oid Message -> Message .

eq changeRecipient(Num’’:Nat,

msg(ST:SyscallType,

payload(Num:Nat, N’:ProcId, M:MsgType, V:MsgVal,

S:String, T:typed, U:untyped)))

= msg(ST:SyscallType,

payload(Num:Nat, Num’’:Nat, M:MsgType, V:MsgVal,

S:String, T:typed, U:untyped)) .

endm

The web app manager is keeping track of the next unused process id num-

ber for a web app, wrapped in nextWAN. Note that web apps start at id 1024

and end at 1055, due to memory limits in the actual IBOS implementation.

Note that, even though this is defined in its own module, ultimately in our

model this is an attribute of the kernel.

247



mod WEBAPPMGR is

inc MSG-PIPE-BASICS .

op nextWAN : Int -> Attribute [ctor] .

endm

A URL is represented by a Label, wrapped inside l, made up of a proto-

col, a domain and a port. We subsort Label to String for practical reasons,

noting that obviously a string representation would be possible for the whole

URL, but less convenient to work with. Lists of labels follow the usual con-

ventions.

mod LABEL is

inc MSG-PIPE-BASICS .

sort Domain .

op dom : String -> Domain [ctor] .

sort Port .

op port : Nat -> Port [ctor] .

sort Protocol .

op http : -> Protocol [ctor] .

op https : -> Protocol [ctor] .

sort Label .

op about-blank : -> Label [ctor] .

op l : Protocol Domain Port -> Label [ctor] .

subsort Label < String .

sort LabelList .

subsort Label < LabelList .

op mtLL : -> LabelList [ctor] .

op _,_ : LabelList LabelList

-> LabelList [ctor assoc id: mtLL] .

endm

Note that we represent data put on the screen only by its source, in the

form of an URL. Web apps are represented with a number of attributes. The

URL of the data that will be rendered on the screen (if this is the active web

app) is stored in rendered, the URL where the web app will load its data

from is stored in URL. The marker inside loading shows whether this web

app has already sent out the request for data, if it needs to refresh or has not

248



yet loaded any data. A 0 represents that such a message was not yet sent.

The check isWebapp is used to see if the given Oid is the id of an actual web

app or the web app place holder, or not.

mod WEBAPP is

inc LABEL .

op rendered : Label -> Attribute [ctor] .

op URL : Label -> Attribute [ctor] .

op loading : Nat -> Attribute [ctor] .

op isWebapp : Oid -> Bool .

eq isWebapp(Num:Nat)

= (1024 <= Num:Nat) and (Num:Nat < 1056) .

eq isWebapp(webapp-id) = true .

eq isWebapp(O:Oid) = false [owise] .

The equation below sends the message to load the data from the given

URL L’, in case it has not yet been sent (loading(0)). The receiver of this

message is the Oid representing any network process network-id, the kernel

will find the right network process in this case.

The rule below changes the URL that is (or would be) rendered appropri-

ately with the return message. Note that the checks for whether this return

message is acceptable happen elsewhere, at checkConnection.

vars N N’ : Nat .

vars ML : MessageList .

vars L L’ : Label .

vars Att Att2 : AttributeSet .

eq < N : proc | rendered(L) , URL(L’) , loading(0) , Att >

< N : pipe | toKernel(ML) , Att2 >

= < N : proc | rendered(L) , URL(L’) , loading(1) , Att >

< N : pipe | toKernel(ML,

msg(OPOS-SYSCALL-FD-SEND-MESSAGE,

payload(N, network-id, MSG-FETCH-URL, 0, L’,

mtTyped, mtUntyped))) , Att2 > .

rl < N : proc | rendered(L) , URL(L’) ,loading(1) , Att >

< N : pipe | fromKernel(

msg(OPOS-SYSCALL-FD-SEND-MESSAGE,

payload(N’, N, MSG-RETURN-URL, V:MsgVal,

249



LL:Label, T:typed, U:untyped)),

ML) , Att2 >

=> < N : proc | rendered(LL:Label) , URL(L’) ,

loading(1) , Att >

< N : pipe | fromKernel(ML) , Att2 > .

endm

The network process receives messages and sends them out to the network

via the NIC. Part of the necessary steps can be found below in the actual

kernel, as they are done by the kernel. In this model, we do not include

latency or anything like that, but just allow each message sent by the NIC

to immediately trigger a response. Step by step it goes like this: (i) network

process gets a request, (ii) network process forms an ethernet frame, (iii)

kernel checks that frame and gives it to the NIC, (iv) NIC generates answer

immediately as an ethernet frame, (v) that return ethernet frame gets handed

to the (correct) network process again, (vi) which then returns it to the sender

of the original request.

Step by step, we first need to be able to identify network processes by

their ids which go from 256 to 1023 and the generic place holder network-id.

A network process has lists of labels in and out, representing incoming and

outgoing data, as well as the id of the process it wants to return data to

returnTo.

mod NETWORK is

inc LABEL .

**** need to be able to check if it is a network process

op isNetProc : Oid -> Bool .

eq isNetProc(Num:Nat)

= (256 <= Num:Nat) and (Num:Nat < 1023) .

eq isNetProc(network-id) = true .

eq isNetProc(O:Oid) = false [owise] .

var N : Nat .

vars ML ML’ : MessageList .

vars Att Att2 : AttributeSet .

op returnTo : ProcId -> Attribute [ctor] .

op in : LabelList -> Attribute [ctor] .

op out : LabelList -> Attribute [ctor] .

250



This rule is a request from a web app and how it is received by the network

process. Note that this has gone through the kernel before getting to this

point, as it is in the in-bound message queue for the network process. The

network process takes the URL to be fetched, L:Label, into its out-bound

queue.

**** request from a webapp:

crl < N : proc | returnTo(SomeProcNum:Nat) ,

out(Ll:LabelList) , Att >

< N : pipe | toKernel(ML) , fromKernel(

msg(OPOS-SYSCALL-FD-SEND-MESSAGE,

payload(Num:Nat, N, MSG-FETCH-URL, V:MsgVal,

L:Label, T:typed, U:untyped)),

ML’) , Att2 >

=> < N : proc | returnTo(Num:Nat) ,

out(Ll:LabelList, L:Label) , Att >

< N : pipe | toKernel(ML) , fromKernel(ML’) , Att2 >

if isNetProc(N) .

Then the network process writes the ethernet frame into the assigned

memory for pick-up by the NIC; note that the kernel will be involved in the

following step.

rl < N : proc | out(L:Label, Ll:LabelList) , Att >

< N : mem | out(mtLL) , Att2 >

=> < N : proc | out(Ll:LabelList) , Att >

< N : mem | out(L:Label) , Att2 > .

Looking at the general explanation above, the following step is missing

and can be found in the kernel. See this DMA related rule there. The NIC

will create a return message right away, but note that the order of returns is

not guaranteed.

rl < 0 : nic | out(Ll:LabelList , L:Label , Ll’:LabelList) ,

in(Ll’’:LabelList) , Att >

=> < 0 : nic | out(Ll:LabelList , Ll’:LabelList) ,

in(Ll’’:LabelList, L:Label) , Att > .

Again, there is another step missing now, to be found in the kernel, which

assigns the incoming ethernet frame to the appropriate network process, you

can see this DMA related rule below. Then the network process can just read

251



the return from its memory for NIC contact, but remember it went through

the kernel and the appropriate check in the step before.

rl < N : proc | in(Ll:LabelList) , Att >

< N : mem | in(L:Label) , Att2 >

=> < N : proc | in(Ll:LabelList, L:Label) , Att >

< N : mem | in(mtLL) , Att2 > .

This equation now sends the return message from the network process to

the web app, which of course will be subject to all the usual checks by the

kernel later on.

ceq < N : proc | returnTo(Num:Nat) ,

in(L:Label, Ll:LabelList) , Att >

< N : pipe | toKernel(ML) , fromKernel(ML’) , Att2 >

= < N : proc | returnTo(Num:Nat) , in(Ll:LabelList) , Att >

< N : pipe | toKernel(ML,

msg(OPOS-SYSCALL-FD-SEND-MESSAGE,

payload(N, Num:Nat, MSG-RETURN-URL, 0, L:Label,

mtTyped, mtUntyped))) ,

fromKernel(ML’) , Att2 >

if isNetProc(N) .

endm

The following module, KERNEL-POLICIES catches the vast majority of all

things the kernel is doing actually. First, we do deal with policies. Sets of

policies are defined as usual. The set of policies is wrapped by msgPolicy

and stored as an attribute of the kernel. A policy itself is a sender and

receiver Oid and a MsgType. Note that the sender and/or the receiver can

be the catch-all identifiers for, e.g., all web apps or all network processes.

mod KERNEL-POLICIES is

inc MSG-PIPE-BASICS .

inc WEBAPPMGR .

inc LABEL .

inc WEBAPP .

inc NETWORK .

sort Policy .

sort PolicySet .

subsort Policy < PolicySet .

op mtPS : -> PolicySet .

252



op _,_ : PolicySet PolicySet

-> PolicySet [assoc comm id: mtPS] .

op msgPolicy : PolicySet -> Attribute [ctor] .

op policy : Oid Oid MsgType -> Policy [ctor] .

The next available process id for a network process is wrapped by the op-

erator nextNetworkProc. The wrapper handledCurrently is the attribute

in the kernel that stores the message that the kernel is currently working

on. There is only ever going to be one message in there, or potentially no

message if the kernel is waiting for other processes.

**** the next available proc id for a network proc

op nextNetworkProc : Nat -> Attribute [ctor] .

**** the message currently handled by the kernel

op handledCurrently : Message -> Attribute [ctor] .

This is the mapping of web apps to URLs. It is stored as an attribute in

the kernel, called weblabels, and it is a set of process ids being mapped to

labels. The label given to a web app here, needs to match the first label of

the mapping for network processes.

sort WebappProcInfo .

op pi : ProcId Label -> WebappProcInfo [ctor] .

sort WebappProcInfoSet .

subsort WebappProcInfo < WebappProcInfoSet .

op mtWPIS : -> WebappProcInfoSet [ctor] .

op _,_ : WebappProcInfoSet WebappProcInfoSet

-> WebappProcInfoSet [assoc comm id: mtWPIS] .

op weblabels : WebappProcInfoSet -> Attribute [ctor] .

This is the mapping for network processes, called networklabels, which

is similarly stored as a set. It maps each process id to two labels, where the

first label has to match the label of the communicating web app, and the

second label is where messages are actually sent to in the network (or NIC

here).

sort NetworkProcInfo .

op pi : ProcId Label Label -> NetworkProcInfo [ctor] .

253



sort NetworkProcInfoSet .

subsort NetworkProcInfo < NetworkProcInfoSet .

op mtNPIS : -> NetworkProcInfoSet [ctor] .

op _,_ : NetworkProcInfoSet NetworkProcInfoSet

-> NetworkProcInfoSet [assoc comm id: mtNPIS] .

op networklabels : NetworkProcInfoSet -> Attribute [ctor] .

Now we are getting back to the DMA rules that we could not put in the

network process. This rule checks that the target is what is allowed for the

network process by matching L’:Label in the outgoing DMA memory to the

destination stored in the kernel, before passing it on to the NIC. Similarly

for the second rule in reverse, for the return message in the NIC, the right

network process is found in the kernel stored mapping and then the incoming

data is given to that DMA block.

rl < N : mem | out(L’:Label) , Att >

< kernel-id : kernel |

networklabels(pi(N, L:Label, L’:Label),

NPIS:NetworkProcInfoSet) ,

Att2 >

< 0 : nic | out(Ll:LabelList) , Att3 >

=> < N : mem | out(mtLL) , Att >

< kernel-id : kernel |

networklabels(pi(N, L:Label, L’:Label),

NPIS:NetworkProcInfoSet) ,

Att2 >

< 0 : nic | out(Ll:LabelList, L’:Label) , Att3 > .

rl < N : mem | in(mtLL) , Att >

< kernel-id : kernel |

networklabels(pi(N, L:Label, L’:Label),

NPIS:NetworkProcInfoSet) ,

Att2 >

< 0 : nic | in(L’:Label, Ll:LabelList) , Att3 >

=> < N : mem | in(L’:Label) , Att >

< kernel-id : kernel |

networklabels(pi(N, L:Label, L’:Label),

NPIS:NetworkProcInfoSet) ,

Att2 >

< 0 : nic | in(Ll:LabelList) , Att3 > .

Once policy checking is completed, e.g., that a MSG-FETCH-URL can be sent

from a web app to a network process, a second step is needed which checks

254



whether that web app and network process are allowed to communicate by

looking into the kernel stored mapping of processes to URLs. This operator

checkConnection is used to do just that. Its argument are two identifiers

and the message (3 argument version), and depending on the message, the

relevant URL is already extracted (4 argument version). In case a connection

can be found for an incoming message, from a network process to a web app,

witnessed by their first label matching, the check succeeds and the message

is forwarded.

op checkConnection : Oid Oid Message -> Message .

op checkConnection : Oid Oid Label Message -> Message .

eq < kernel-id : kernel |

handledCurrently(checkConnection(Num:Nat, Num’:Nat, M)) ,

weblabels(pi(Num’:Nat, L:Label), WPIS:WebappProcInfoSet) ,

networklabels(pi(Num:Nat, L:Label, L’:Label),

NPIS:NetworkProcInfoSet) ,

Att >

= < kernel-id : kernel |

handledCurrently(M) ,

weblabels(pi(Num’:Nat, L:Label), WPIS:WebappProcInfoSet) ,

networklabels(pi(Num:Nat, L:Label, L’:Label),

NPIS:NetworkProcInfoSet) ,

Att > .

In the direction of an outgoing message, going to L’:Label, from a web

app to a network process, the given network process address is simply ignored.

If a matching network process, with the same first URL, and the actual target

L’:Label as its second URL, is found, then the message is passed onto that

destination. That is done by using operator changeRecipient (shown above)

with that network process id and the message.

eq < kernel-id : kernel |

handledCurrently(checkConnection(

Num:Nat, Num’:Nat, L’:Label, M)) ,

weblabels(pi(Num:Nat, L:Label), WPIS:WebappProcInfoSet) ,

networklabels(pi(Num’’:Nat, L:Label, L’:Label),

NPIS:NetworkProcInfoSet) ,

Att >

= < kernel-id : kernel |

handledCurrently(changeRecipient(Num’’:Nat, M)) ,

255



weblabels(pi(Num:Nat, L:Label), WPIS:WebappProcInfoSet) ,

networklabels(pi(Num’’:Nat, L:Label, L’:Label),

NPIS:NetworkProcInfoSet) ,

Att > .

The last possible case here is that no appropriate network process exists.

This is quite possible as the first message sent from a web app to the network

is what creates its associated network process. The network process, its DMA

memory and its pipe are all created in this step.

eq < kernel-id : kernel |

handledCurrently(checkConnection(

Num:Nat, Num’:Oid, L’:Label, M)) ,

weblabels(pi(Num:Nat, L:Label), WPIS:WebappProcInfoSet) ,

networklabels(NPIS:NetworkProcInfoSet) ,

nextNetworkProc(Num’’:Nat) ,

Att >

= < kernel-id : kernel |

handledCurrently(changeRecipient(Num’’:Nat, M)) ,

weblabels(pi(Num:Nat, L:Label), WPIS:WebappProcInfoSet) ,

networklabels(pi(Num’’:Nat, L:Label, L’:Label),

NPIS:NetworkProcInfoSet) ,

nextNetworkProc(s(Num’’:Nat)) ,

Att >

< Num’’:Nat : proc | returnTo(Num:Nat) ,

in(mtLL) , out(mtLL) >

< Num’’:Nat : mem | in(mtLL) , out(mtLL) >

< Num’’:Nat : pipe | toKernel(mt), fromKernel(mt) >

[owise] .

This rule models the kernel receiving a message on some pipe. It subjects

the incoming OP message to the policy checking against the policy set MP,

and sets the sender’s process id correctly to ID, independent of the claimed

id N in the actual message payload.

var M : Message .

var MP : PolicySet .

vars Att Att2 Att3 : AttributeSet .

vars ID N N’ : ProcId .

var ML : MessageList .

rl [kernelReceivesOPMessage] :

< kernel-id : kernel |

256



handledCurrently(mt) ,

msgPolicy(MP), Att >

< ID : pipe | toKernel(

msg(ST:SyscallType,

payload(N, N’, M:MsgType, V:MsgVal, S:String,

T:typed, U:untyped)), ML) ,

Att2 >

=>

< kernel-id : kernel |

handledCurrently(policyAllows(

msg(ST:SyscallType,

payload(ID, N’, M:MsgType, V:MsgVal, S:String,

T:typed, U:untyped)), MP)) ,

msgPolicy(MP), Att >

< ID : pipe | toKernel(ML) , Att2 > .

Once the policy checking has been completed, the OP message can be

forwarded by the kernel in this rule.

rl [kernelForwardsOPMessage] :

< kernel-id : kernel | handledCurrently(

msg(ST:SyscallType,

payload(ID, N’, M:MsgType, V:MsgVal, S:String,

T:typed, U:untyped))) ,

Att >

< N’ : pipe | fromKernel(ML) , Att2 >

=>

< kernel-id : kernel |

handledCurrently(mt) ,

Att >

< N’ : pipe | fromKernel(ML,

msg(ST:SyscallType,

payload(ID, N’, M:MsgType, V:MsgVal, S:String,

T:typed, U:untyped))) ,

Att2 > .

The Label stored in the displayedTopBar is the address bar that is

shown on the UI; it is an attribute of the kernel, to simplify it being part of

the secure UI. The actual content of the screen is modeled in the process with

the display-id identifier, which has the attribute displayedContent which

stores the URL of the currently displayed content. Only the active web app,

identified by the process id in activeWebapp, is able to change the content

that is displayed on screen. Initially it is empty, operator none is used for

257



that. There is also one more wrapper for messages, called kernelDo, it is

used for messages that the kernel is handling, but where it has to do more

than just forward the message, but actually needs to take action instead.

op displayedTopBar : Label -> Attribute [ctor] .

op display-id : -> ProcId .

op activeWebapp : ProcId -> Attribute [ctor] .

op none : -> ProcId .

op displayedContent : Label -> Attribute [ctor] .

op kernelDo : Message -> Message .

This next rule is used after the policy checking completes, in case the

kernel has to do something. Here, the kernel switches the active tab. For

that, it changes the address bar representation displayedTopBar, it changes

the active web app in activeWebApp and it empties the displayed memory,

which the new owner will need to refresh.

rl [kernelHandlesTabSwitch] :

< kernel-id : kernel |

handledCurrently(kernelDo(

msg(ST:SyscallType,

payload(ui-id, N’, MSG-SWITCH-TAB, V:MsgVal,

S:String, T:typed, U:untyped)))) ,

displayedTopBar(L:Label),

weblabels(pi(N’, L’:Label), WPIS:WebappProcInfoSet) ,

Att >

< display-id : proc |

activeWebapp(P:ProcId),

displayedContent(L’’:Label),

Att2 >

=>

< kernel-id : kernel |

handledCurrently(mt) ,

displayedTopBar(L’:Label),

weblabels(pi(N’, L’:Label), WPIS:WebappProcInfoSet) ,

Att >

< display-id : proc |

activeWebapp(N’),

displayedContent(about-blank),

Att2 > .

258



The currently active web app can change the display whenever it wants

to. The following rule models the abstract version; see the display mem-

ory modeling section, Section B.3, for a more concrete, but buggy, version

corresponding to a design error which is then corrected.

crl < display-id : proc |

activeWebapp(N),

displayedContent(LOld:Label),

Att2 >

< N : proc |

rendered(L:Label),

Att3 >

=>

< display-id : proc |

activeWebapp(N),

displayedContent(L:Label),

Att2 >

< N : proc |

rendered(L:Label),

Att3 >

if LOld:Label =/= L:Label .

For the creation of a new web app, after policy checking, the kernel does

all the required steps here. It changes the address bar, the display memory

access, clearing it out first, and then lets the new owner refresh it later. Note

that for any new URL a new web app is created, as the label of an existing

web app never changes.

rl [kernelHandlesNewUrl] :

< kernel-id : kernel |

handledCurrently(kernelDo(

msg(ST:SyscallType,

payload(ui-id, webapp-id, MSG-NEW-URL, V:MsgVal,

URL:Label, T:typed, U:untyped)))) ,

displayedTopBar(L:Label),

weblabels(WPIS:WebappProcInfoSet) ,

Att >

< display-id : proc |

activeWebapp(P:ProcId),

displayedContent(L’’:Label),

Att2 >

< webappmgr-id : proc | nextWAN(NewWA:Nat) , Att3 >

259



=>

< kernel-id : kernel |

handledCurrently(mt) ,

displayedTopBar(URL:Label),

weblabels(pi(NewWA:Nat, URL:Label),

WPIS:WebappProcInfoSet) ,

Att >

< display-id : proc |

activeWebapp(NewWA:Nat),

displayedContent(about-blank),

Att2 >

< webappmgr-id : proc | nextWAN(s(NewWA:Nat)) , Att3 >

< NewWA:Nat : proc |

rendered(about-blank) ,

URL(URL:Label) ,

loading(0) >

< NewWA:Nat : pipe |

fromKernel(mt),

toKernel(mt) > .

The operator policyAllows is responsible for checking whether a given

message is permissible with respect to a given set of policies. The set of

policies will be defined in the initial configuration for any model execution.

The first equation below allows a message through if the process identifiers

and message type have a match in the policy set.

op policyAllows : Message PolicySet -> Message .

eq policyAllows(

msg(ST:SyscallType,

payload(N, N’, M:MsgType, V:MsgVal, S:String,

T:typed, U:untyped)),

(policy(N, N’, M:MsgType), MP))

= msg(ST:SyscallType,

payload(N, N’, M:MsgType, V:MsgVal, S:String,

T:typed, U:untyped)) .

In case a generic policy, e.g., for all web apps, see webapp-id, is used,

we check that the process id in that argument slot (the first one), namely

Num:Nat is indeed a web app process id. In this particular case, this is for

messages from web apps to a non-network process.

ceq policyAllows(

260



msg(ST:SyscallType,

payload(Num:Nat, N’, M:MsgType, V:MsgVal, S:String,

T:typed, U:untyped)),

(policy(webapp-id, N’, M:MsgType), MP))

= msg(ST:SyscallType,

payload(Num:Nat, N’, M:MsgType, V:MsgVal, S:String,

T:typed, U:untyped))

if isWebapp(Num:Nat) /\ not isNetProc(N’) .

This is for policies sending from a process that is not a network process

to a web app.

ceq policyAllows(

msg(ST:SyscallType,

payload(N, Num’:Nat, M:MsgType, V:MsgVal, S:String,

T:typed, U:untyped)),

(policy(N, webapp-id, M:MsgType), MP))

= msg(ST:SyscallType,

payload(N, Num’:Nat, M:MsgType, V:MsgVal, S:String,

T:typed, U:untyped))

if isWebapp(Num’:Nat) /\ not isNetProc(N) .

Similarly now for a network process communicating with a non-web app.

ceq policyAllows(

msg(ST:SyscallType,

payload(Num:Nat, N’, M:MsgType, V:MsgVal, S:String,

T:typed, U:untyped)),

(policy(network-id, N’, M:MsgType), MP))

= msg(ST:SyscallType,

payload(Num:Nat, N’, M:MsgType, V:MsgVal, S:String,

T:typed, U:untyped))

if isNetProc(Num:Nat) /\ not isWebapp(N’) .

And again similarly for a non-web app communicating with a network

process.

ceq policyAllows(

msg(ST:SyscallType,

payload(N, Num’:Nat, M:MsgType, V:MsgVal, S:String,

T:typed, U:untyped)),

(policy(N, network-id, M:MsgType), MP))

= msg(ST:SyscallType,

payload(N, Num’:Nat, M:MsgType, V:MsgVal, S:String,

261



T:typed, U:untyped))

if isNetProc(Num’:Nat) /\ not isWebapp(N) .

And now for the connection between a web app and a network process.

Note that this requires further checking by virtue of the checkConnection

operator.

ceq policyAllows(

msg(ST:SyscallType,

payload(Num:Nat, Num’:Oid, M:MsgType, V:MsgVal,

L:Label, T:typed, U:untyped)),

(policy(webapp-id, network-id, M:MsgType), MP))

= checkConnection(Num:Nat, Num’:Oid, L:Label,

msg(ST:SyscallType,

payload(Num:Nat, Num’:Oid, M:MsgType, V:MsgVal,

L:Label, T:typed, U:untyped)))

if isWebapp(Num:Nat) /\ isNetProc(Num’:Oid) .

For the reverse direction from a network process to a web app we have

this equation. This requires a check using checkConnection as well.

ceq policyAllows(

msg(ST:SyscallType,

payload(Num:Nat, Num’:Nat, M:MsgType, V:MsgVal,

S:String, T:typed, U:untyped)),

(policy(network-id, webapp-id, M:MsgType), MP))

= checkConnection(Num:Nat, Num’:Nat,

msg(ST:SyscallType,

payload(Num:Nat, Num’:Nat, M:MsgType, V:MsgVal,

S:String, T:typed, U:untyped)))

if isNetProc(Num:Nat) /\ isWebapp(Num’:Nat) .

This equation is to allow the UI to tell a web app to switch the tab.

Ultimately the kernel executes this actually. Even though this looks like a

very specific equation, it is still contingent on the actual policy to be in the

set of policies!

ceq policyAllows(

msg(ST:SyscallType,

payload(ui-id, Num’:Nat, MSG-SWITCH-TAB, V:MsgVal,

S:String, T:typed, U:untyped)),

(policy(ui-id, webapp-id, MSG-SWITCH-TAB), MP))

= kernelDo(msg(ST:SyscallType,

262



payload(ui-id, Num’:Nat, MSG-SWITCH-TAB, V:MsgVal,

S:String, T:typed, U:untyped)))

if isWebapp(Num’:Nat) .

The UI can send a message to create a new web app with a new URL,

being allowed by this equation. Note that the requisite policy needs to be in

the initial configuration for this equation to be applicable, like above.

eq policyAllows(

msg(ST:SyscallType,

payload(ui-id, webapp-id, MSG-NEW-URL, V:MsgVal,

URL:Label, T:typed, U:untyped)),

(policy(ui-id, webapp-id, MSG-NEW-URL), MP))

= kernelDo(msg(ST:SyscallType,

payload(ui-id, webapp-id, MSG-NEW-URL, V:MsgVal,

URL:Label, T:typed, U:untyped))) .

If it is not explicitly allowed, it is implicitly disallowed. This equation

takes care of that, by deleting all messages that are not conformant with a

policy.

eq policyAllows(M, MP) = mt [owise] .

endm

The UI does not have a separate module. The relevant pieces of the UI are

the URL of what is on the screen, displayedContent, and the address bar,

displayedTopBar. Those are all included in the kernel as we saw already.

This module KERNEL collects all prior pieces, including specifically the

module KERNEL-POLICIES which in fact contains more than just the policies.

mod KERNEL is

inc MSG-PIPE-BASICS .

inc KERNEL-POLICIES .

inc WEBAPPMGR .

inc WEBAPP .

endm

The module RUN contains the KERNEL and defines the initial state using a

number of helper operators that will all be defined further on.

mod RUN is

inc MSG-PIPE-BASICS .

263



inc KERNEL-POLICIES .

inc KERNEL .

op init-proc : -> Configuration .

op initialPS : -> PolicySet .

ops init-kernel init-display

init-webappmgr init-cache init-cookie init-vesafb-server

init-mouse-server init-network-server init-dns-server

init-ui init-mouse-intr init-network-intr init-nic :

-> Configuration .

The following is the whole set of initial processes, and each of the elements

is defined afterwards:

eq init-proc = init-display init-webappmgr init-cache

init-cookie init-vesafb-server init-mouse-server

init-network-server init-dns-server init-ui

init-mouse-intr init-network-intr init-nic .

eq init-display =

< display-id : proc | activeWebapp(none) ,

displayedContent(about-blank) > .

eq init-webappmgr =

< webappmgr-id : proc | nextWAN(1024) >

< webappmgr-id : pipe | toKernel(mt) , fromKernel(mt) > .

eq init-cache =

< cache-id : proc | none >

< cache-id : pipe | toKernel(mt), fromKernel(mt) > .

eq init-cookie =

< cookie-id : proc | none >

< cookie-id : pipe | toKernel(mt), fromKernel(mt) > .

eq init-vesafb-server =

< vesafb-server-id : proc | none >

< vesafb-server-id : pipe |

toKernel(mt), fromKernel(mt) > .

eq init-mouse-server =

< mouse-server-id : proc | none >

< mouse-server-id : pipe |

toKernel(mt), fromKernel(mt) > .

eq init-network-server =

< network-server-id : proc | none >

< network-server-id : pipe |

toKernel(mt), fromKernel(mt) > .

eq init-dns-server =

264



< dns-server-id : proc | none >

< dns-server-id : pipe | toKernel(mt), fromKernel(mt) > .

eq init-ui =

< ui-id : proc | none >

< ui-id : pipe | toKernel(mt), fromKernel(mt) > .

eq init-mouse-intr =

< mouse-intr-id : proc | none >

< mouse-intr-id : pipe | toKernel(mt), fromKernel(mt) > .

eq init-network-intr =

< mouse-intr-id : proc | none >

< mouse-intr-id : pipe | toKernel(mt), fromKernel(mt) > .

eq init-nic =

< 0 : nic | in(mtLL) , out(mtLL) > .

Now we define the initial set of policies, and each of the individual policies

thereafter.

eq initialPS = msg-webapp-ui , msg-webapp-cookie ,

msg-webapp-network , msg-webapp-storage ,

msg-ui-webapp , msg-network-cookie ,

msg-network-webapp , msg-cookie-webapp ,

msg-cookie-network , msg-storage-webapp ,

msg-storage-ui .

op msg-webapp-ui : -> PolicySet .

eq msg-webapp-ui = policy(webapp-id, ui-id, MSG-UI-MSG) .

op msg-webapp-cookie : -> PolicySet .

eq msg-webapp-cookie =

policy(webapp-id, cookie-id, MSG-DOM-COOKIE-SET) ,

policy(webapp-id, cookie-id, MSG-DOM-COOKIE-GET) .

op msg-webapp-network : -> PolicySet .

eq msg-webapp-network =

policy(webapp-id, network-id, MSG-FETCH-URL) ,

policy(webapp-id, network-id, MSG-FETCH-URL-ABORT) .

op msg-webapp-storage : -> PolicySet .

eq msg-webapp-storage =

policy(webapp-id, storage-id, MSG-WRITE-FILE) ,

policy(webapp-id, storage-id, MSG-READ-FILE) .

op msg-ui-webapp : -> PolicySet .

eq msg-ui-webapp =

policy(ui-id, webapp-id, MSG-WEBAPP-MSG) ,

policy(ui-id, webapp-id, MSG-SWITCH-TAB) ,

policy(ui-id, webapp-id, MSG-NEW-URL) .

op msg-network-cookie : -> PolicySet .

265



eq msg-network-cookie =

policy(network-id, cookie-id, MSG-COOKIE-SET) ,

policy(network-id, cookie-id, MSG-COOKIE-GET) .

op msg-network-webapp : -> PolicySet .

eq msg-network-webapp =

policy(network-id, webapp-id, MSG-RETURN-URL) ,

policy(network-id, webapp-id, MSG-RETURN-URL-METADATA) .

op msg-cookie-webapp : -> PolicySet .

eq msg-cookie-webapp =

policy(cookie-id, webapp-id, MSG-DOM-COOKIE-GET-RETURN) .

op msg-cookie-network : -> PolicySet .

eq msg-cookie-network =

policy(cookie-id, network-id, MSG-COOKIE-GET-RETURN) .

op msg-storage-webapp : -> PolicySet .

eq msg-storage-webapp =

policy(storage-id, webapp-id, MSG-READ-FILE-RETURN) .

op msg-storage-ui : -> PolicySet .

eq msg-storage-ui =

policy(storage-id, ui-id, MSG-DOWNLOAD-INFO) .

endm

Now we add the module TEST-INSTRUMENTATION that is useful for us to be

able to give test drive commands to the whole configuration, without needing

a mouse or keyboard model. Initially we define the sort Cmd to be one partic-

ular command, for which we also define lists. The whole instrumentation will

be inside the new object with object identifier testMsg and class identifier

testMsg. The actual commands are switch-tab, and new-url which takes

a URL as argument.

mod TEST-INSTRUMENTATION is

inc RUN .

sort Cmd .

sort CmdList .

subsort Cmd < CmdList .

op mtCmdList : -> CmdList .

op _,_ : CmdList CmdList

-> CmdList [assoc comm id: mtCmdList] .

op cmd : CmdList -> Attribute [ctor] .

op testMsg : -> Cid .

op testMsg : -> Oid .

op new-url : Label -> Cmd .

266



op switch-tab : -> Cmd .

We are defining a number of generic but fixed URLs. Then we define

further new URLs based on a natural number argument, i.e., new-url.

ops Url1 Url2 Url3 Url4 : -> Label .

vars Att Att2 Att3 : AttributeSet .

op url : Nat -> Label .

For a URL mis-match, two different URLs are enough, so we allow new-url

to expand in three different ways based on these rules, to be able to have two

URLs involved in a mis-match and an independent further URL. Note that

we are going to use search, so all possible combinations will be explored.

The inspect operator is a command that we use here to rewrite to

inspect(3), which means a three step inspection. It would be possible to

use a different number in this rule, or simply give the operator with an argu-

ment of the users choice right away. Then, each step will either be to switch

the tab, or get sent a new URL. Keeping with our modeling methodology

of a soup of objects, inspect-space creates that test driver object with the

three step inspection.

op inspect : -> Cmd .

op inspect : Nat -> Cmd .

rl inspect => inspect(3) .

rl inspect(0) => mtCmdList .

rl inspect(s(N:Nat)) => new-url(url(1)) , inspect(N:Nat) .

rl inspect(s(N:Nat)) => new-url(url(2)) , inspect(N:Nat) .

rl inspect(s(N:Nat)) => new-url(url(3)) , inspect(N:Nat) .

rl inspect(s(N:Nat)) => switch-tab , inspect(N:Nat) .

op inspect-space : -> Configuration .

eq inspect-space =

< testMsg : testMsg | cmd( inspect(3) ) > .

The new-url is resolved like this.

rl [testNewUrl] :

< kernel-id : kernel |

handledCurrently(mt) ,

Att >

< testMsg : testMsg | cmd( new-url(L:Label) ,

267



CMDList:CmdList ) >

=>

< kernel-id : kernel |

handledCurrently(kernelDo(

msg(OPOS-SYSCALL-FD-SEND-MESSAGE,

payload(ui-id, webapp-id, MSG-NEW-URL, 0,

L:Label, mtTyped, mtUntyped)))) ,

Att >

< testMsg : testMsg | cmd( CMDList:CmdList ) >

.

And the switch-tab is resolved like this.

rl [testTabSwitch] :

< testMsg : testMsg | cmd( switch-tab , CMDList:CmdList ) >

< kernel-id : kernel |

handledCurrently(mt) ,

weblabels(pi(N’:Nat, L’:Label),

WPIS:WebappProcInfoSet) ,

Att >

=>

< testMsg : testMsg | cmd( CMDList:CmdList ) >

< kernel-id : kernel |

handledCurrently(kernelDo(

msg(OPOS-SYSCALL-FD-SEND-MESSAGE,

payload(ui-id, N’:Nat, MSG-SWITCH-TAB, 0,

about-blank, mtTyped, mtUntyped)))) ,

weblabels(pi(N’:Nat, L’:Label),

WPIS:WebappProcInfoSet) ,

Att > .

The base for an initial kernel for tests is the following.

op init-simp-kernel : -> Configuration .

eq init-simp-kernel

= < kernel-id : kernel |

handledCurrently(mt) ,

msgPolicy(initialPS) ,

nextNetworkProc(256) ,

weblabels(mtWPIS) ,

networklabels(mtNPIS) ,

displayedTopBar(about-blank) >

init-proc .

An example initial kernel is defined like this.

268



***** experimental driver for messages!

eq init-kernel

= < kernel-id : kernel |

handledCurrently(mt) ,

msgPolicy(initialPS) ,

nextNetworkProc(256) ,

weblabels(pi(1050,l(http,dom("test"),port(80)))) ,

networklabels(mtNPIS) ,

displayedTopBar(about-blank) >

< 1050 : proc | rendered(about-blank) ,

URL(l(http, dom("test"), port(81))) , loading(1) >

< 1050 : pipe | toKernel(

msg(OPOS-SYSCALL-FD-SEND-MESSAGE,

payload(1050, 500,

MSG-FETCH-URL, 0,

l(http,dom("test"),port(81)),

mtTyped, mtUntyped))

) ,

fromKernel(mt) >

< 0 : nic | in(mtLL) , out(mtLL) >

.

endm

Analysis of the above code happens at the very end of this chapter, in

Section B.4.

B.2 Internal Rules Termination

We are considering here the termination of the internal rules for our IBOS

model. This is needed for the reordering of the rewrite sequence into nor-

malizing with the internal rules between each single trigger rule execution to

be sensible. For this goal we will present the internal rules in a descending

order that leads to termination.

Let us present the order in which the rules will be executed in the system,

and let us note that each data transfer that has used one rule will never be

able to be used in that same rule (with the same argument, see the first rule’s

explanation), or any rule that is listed before, again. See Appendix B.1 for

the whole specification and the context and explanation of the rules, our

purpose here is to show the ordering of the rules.

The first rule shows how the kernel receives a browser related data transfer

269



message and how it handles it. It gets passed to the policy checking and will

then be treated further in the rules below. Note that this rule can possibly

be used multiple times in a data transfer, but with different arguments (the

MsgType in particular will be another one).

rl [kernelReceivesOPMessage] :

< kernel-id : kernel |

handledCurrently(mt) ,

msgPolicy(MP), Att >

< ID : pipe | toKernel(

msg(ST:SyscallType,

payload(N, N’, M:MsgType, V:MsgVal, S:String,

T:typed, U:untyped)), ML) ,

Att2 >

=>

< kernel-id : kernel |

handledCurrently(policyAllows(

msg(ST:SyscallType,

payload(ID, N’, M:MsgType, V:MsgVal, S:String,

T:typed, U:untyped)), MP)) ,

msgPolicy(MP), Att >

< ID : pipe | toKernel(ML) , Att2 > .

After policy checking the message can be forwarded to the recipient. Po-

tentially one of the special cases below can apply instead.

rl [kernelForwardsOPMessage] :

< kernel-id : kernel | handledCurrently(

msg(ST:SyscallType,

payload(ID, N’, M:MsgType, V:MsgVal, S:String,

T:typed, U:untyped))) ,

Att >

< N’ : pipe | fromKernel(ML) , Att2 >

=>

< kernel-id : kernel |

handledCurrently(mt) ,

Att >

< N’ : pipe | fromKernel(ML,

msg(ST:SyscallType,

payload(ID, N’, M:MsgType, V:MsgVal, S:String,

T:typed, U:untyped))) ,

Att2 > .

270



If the data transfer was supposed to lead to the creation of a new web

app, then the kernel does that. This rule will not be usable again after on

that data transfer. The potential follow-up messages in this data transfer

are based on the loading(0) property which will start the loading of that

web site’s content.

rl [kernelHandlesNewUrl] :

< kernel-id : kernel |

handledCurrently(kernelDo(

msg(ST:SyscallType,

payload(ui-id, webapp-id, MSG-NEW-URL, V:MsgVal,

URL:Label, T:typed, U:untyped)))) ,

displayedTopBar(L:Label),

weblabels(WPIS:WebappProcInfoSet) ,

Att >

< display-id : proc |

activeWebapp(P:ProcId),

displayedContent(L’’:Label),

Att2 >

< webappmgr-id : proc | nextWAN(NewWA:Nat) , Att3 >

=>

< kernel-id : kernel |

handledCurrently(mt) ,

displayedTopBar(URL:Label),

weblabels(pi(NewWA:Nat, URL:Label),

WPIS:WebappProcInfoSet) ,

Att >

< display-id : proc |

activeWebapp(NewWA:Nat),

displayedContent(about-blank),

Att2 >

< webappmgr-id : proc | nextWAN(s(NewWA:Nat)) , Att3 >

< NewWA:Nat : proc |

rendered(about-blank) ,

URL(URL:Label) ,

loading(0) >

< NewWA:Nat : pipe |

fromKernel(mt),

toKernel(mt) > .

In case the message was a tab switch this is handled here and this rule

will not be re-used again for this data transfer as well.

271



rl [kernelHandlesTabSwitch] :

< kernel-id : kernel |

handledCurrently(kernelDo(

msg(ST:SyscallType,

payload(ui-id, N’, MSG-SWITCH-TAB, V:MsgVal,

S:String, T:typed, U:untyped)))) ,

displayedTopBar(L:Label),

weblabels(pi(N’, L’:Label), WPIS:WebappProcInfoSet) ,

Att >

< display-id : proc |

activeWebapp(P:ProcId),

displayedContent(L’’:Label),

Att2 >

=>

< kernel-id : kernel |

handledCurrently(mt) ,

displayedTopBar(L’:Label),

weblabels(pi(N’, L’:Label), WPIS:WebappProcInfoSet) ,

Att >

< display-id : proc |

activeWebapp(N’),

displayedContent(about-blank),

Att2 > .

The remaining rules represent the chain of messages started for a data

transfer that loads data from a given web site, going through the NIC, getting

data back from the NIC, going back to the network process and ultimately

going to the web app for display purposes. Once a data transfer is at this

stage these rules will be applied consecutively, with the kernel handling rule

from above potentially involved, but due to the arguments the only further

processing from there is with the remaining rules below this point. Note that

of course each of these rules only applies once!

First, this is the request from a web app to a network process to get data

from a given URL.

crl < N : proc | returnTo(SomeProcNum:Nat) ,

out(Ll:LabelList) , Att >

< N : pipe | toKernel(ML) , fromKernel(

msg(OPOS-SYSCALL-FD-SEND-MESSAGE,

payload(Num:Nat, N, MSG-FETCH-URL, V:MsgVal,

L:Label, T:typed, U:untyped)),

ML’) , Att2 >

272



=> < N : proc | returnTo(Num:Nat) ,

out(Ll:LabelList, L:Label) , Att >

< N : pipe | toKernel(ML) , fromKernel(ML’) , Att2 >

if isNetProc(N) .

This is the network process writing that request into the memory for NIC

pickup, after kernel validation.

rl < N : proc | out(L:Label, Ll:LabelList) , Att >

< N : mem | out(mtLL) , Att2 >

=> < N : proc | out(Ll:LabelList) , Att >

< N : mem | out(L:Label) , Att2 > .

Kernel validating the network process data for the NIC in the next rule.

rl < N : mem | out(L’:Label) , Att >

< kernel-id : kernel |

networklabels(pi(N, L:Label, L’:Label),

NPIS:NetworkProcInfoSet) ,

Att2 >

< 0 : nic | out(Ll:LabelList) , Att3 >

=> < N : mem | out(mtLL) , Att >

< kernel-id : kernel |

networklabels(pi(N, L:Label, L’:Label),

NPIS:NetworkProcInfoSet) ,

Att2 >

< 0 : nic | out(Ll:LabelList, L’:Label) , Att3 > .

The NIC interaction with the outside world is given as an immediate

response from that outside world.

rl < 0 : nic | out(Ll:LabelList , L:Label , Ll’:LabelList) ,

in(Ll’’:LabelList) , Att >

=> < 0 : nic | out(Ll:LabelList , Ll’:LabelList) ,

in(Ll’’:LabelList, L:Label) , Att > .

The NIC’s return data is given to the memory accessible by the right

network process.

rl < N : mem | in(mtLL) , Att >

< kernel-id : kernel |

networklabels(pi(N, L:Label, L’:Label),

NPIS:NetworkProcInfoSet) ,

273



Att2 >

< 0 : nic | in(L’:Label, Ll:LabelList) , Att3 >

=> < N : mem | in(L’:Label) , Att >

< kernel-id : kernel |

networklabels(pi(N, L:Label, L’:Label),

NPIS:NetworkProcInfoSet) ,

Att2 >

< 0 : nic | in(Ll:LabelList) , Att3 > .

That appropriate network process fetches the data from the memory.

rl < N : proc | in(Ll:LabelList) , Att >

< N : mem | in(L:Label) , Att2 >

=> < N : proc | in(Ll:LabelList, L:Label) , Att >

< N : mem | in(mtLL) , Att2 > .

Between the above rule and the following rule there is the use of an equa-

tion, and then the passing mechanism of the first and second rule (labeled

kernelReceivesOPMessage and kernelForwardsOPMessage) at the top gets

used, but this time with a MSG-RETURN-URL instead of the MSG-FETCH-URL

argument in the payload, which leads to all the data fetching related rules

not applying. So, from here the first two rules will apply once each and then

the remaining rules below trigger in order.

rl < N : proc | rendered(L) , URL(L’) ,loading(1) , Att >

< N : pipe | fromKernel(

msg(OPOS-SYSCALL-FD-SEND-MESSAGE,

payload(N’, N, MSG-RETURN-URL, V:MsgVal,

LL:Label, T:typed, U:untyped)),

ML) , Att2 >

=> < N : proc | rendered(LL:Label) , URL(L’) ,

loading(1) , Att >

< N : pipe | fromKernel(ML) , Att2 > .

The above rule potentially changes the URL in rendered and thus the

next rule can apply to adjust the displayedContent, but it can only apply

a single time per change, due to the condition.

crl < display-id : proc |

activeWebapp(N),

displayedContent(LOld:Label),

Att2 >

274



< N : proc |

rendered(L:Label),

Att3 >

=>

< display-id : proc |

activeWebapp(N),

displayedContent(L:Label),

Att2 >

< N : proc |

rendered(L:Label),

Att3 >

if LOld:Label =/= L:Label .

At this point no further rule will apply to a data transfer that has taken

all the steps to get through the rules to this point.

Thus, we have shown the order in which the rules can be applied and we

note that this way we have explained that any sequence of steps using these

rules will actually terminate.

B.3 Display Memory Modeling

Next we are looking at the contents of the file memory.maude. This is a model

of the memory and page table interaction which finds a bug. Therefore

it is not integrated into the rest of the model but requires fixing in the

implementation of IBOS. Some simplification of processes from before have

been done for this.

First, we add three types of memory, which represent all memory we care

about. Specifically it is the empty memory, the current video memory, and

any kind of other memory. We also define a page table. Its entries map

process identifiers (that will turn out to be web apps) to memory locations.

in ibos.maude

mod MEMORY is

inc RUN .

inc TEST-INSTRUMENTATION .

sort Memory .

275



op nullMemory : -> Memory [ctor] .

op videoMemory : -> Memory [ctor] .

op otherMemory : -> Memory [ctor] .

sort PGTE .

op pg-table-entry : ProcId Memory -> PGTE [ctor] .

sort PGTESet .

subsort PGTE < PGTESet .

op mtPGTEs : -> PGTESet .

op _,_ : PGTESet PGTESet

-> PGTESet [assoc comm id: mtPGTEs] .

op pg-table : PGTESet -> Attribute [ctor] .

op vidMem : Label -> Attribute [ctor] .

This is our testing instrumentation. The initial-test is what we base

our further checking on.

op initial-test : -> Configuration .

eq initial-test

= < kernel-id : kernel |

handledCurrently(mt) ,

msgPolicy(mtPS) ,

nextNetworkProc(256) ,

weblabels(mtWPIS) ,

networklabels(mtNPIS) ,

displayedTopBar(Url1) ,

pg-table(pg-table-entry(1050, videoMemory)) ,

activeWebapp(1050) ,

vidMem(Url1)

>

init-webappmgr

< 1050 : proc | rendered(Url1), URL(Url1), loading(1) >

< 1050 : pipe | toKernel(mt) ,

fromKernel(mt) >

.

The bug-trigger message is one that we have found through experimen-

tation to find the display memory bug of creating an empty display.

op bug-trigger : -> Configuration .

eq bug-trigger =

< testMsg : testMsg | cmd( new-tab(Url2) ,

update(1050, Url3) ,

276



tab-switch(1050)) > .

For the above to make sense we of course require the following definitions

for our test drivers. Similar to inspect from above we will define the elements

for explore here.

op new-tab : Label -> Cmd .

op update : Oid Label -> Cmd .

op tab-switch : Oid -> Cmd .

op url : Nat -> Label .

op new-tab : -> Cmd .

rl new-tab => new-tab(url(1)) .

rl new-tab => new-tab(url(2)) .

rl new-tab => new-tab(url(3)) .

op update : -> Cmd .

op update : Label -> Cmd .

rl update => update(url(1)) .

rl update => update(url(2)) .

rl update => update(url(3)) .

op tab-switch : -> Cmd .

These are the rules that show what each of the commands actually does.

Both of these only work with web apps.

rl < testMsg : testMsg | cmd ( update(U:Label),

CMDList:CmdList) >

< N:Nat : proc | rendered(U’:Label),

URL(U’’:Label), loading(N’:Nat) >

=> < testMsg : testMsg | cmd ( update(N:Nat, U:Label),

CMDList:CmdList) >

< N:Nat : proc | rendered(U’:Label),

URL(U’’:Label), loading(N’:Nat) > .

rl < testMsg : testMsg | cmd ( tab-switch,

CMDList:CmdList) >

< N:Nat : proc | rendered(U’:Label),

URL(U’’:Label), loading(N’:Nat) >

=> < testMsg : testMsg | cmd ( tab-switch(N:Nat),

CMDList:CmdList) >

< N:Nat : proc | rendered(U’:Label),

URL(U’’:Label), loading(N’:Nat) > .

277



This is the similar exploration setting that will be complete expanded

due to the search commands we will run.

op explore : -> Cmd .

op explore : Nat -> Cmd .

rl explore => explore(3) .

rl explore(0) => mtCmdList .

rl explore(s(N:Nat)) => new-tab , explore(N:Nat) .

rl explore(s(N:Nat)) => update , explore(N:Nat) .

rl explore(s(N:Nat)) => tab-switch , explore(N:Nat) .

op explore-space : -> Configuration .

eq explore-space =

< testMsg : testMsg | cmd( explore(3) ) > .

This rule works with the new-tab command, to create a new process and

pipe and to make it the active web app.

rl < testMsg : testMsg | cmd ( new-tab(U:Label),

CMDList:CmdList) >

< kernel-id : kernel |

Att1:AttributeSet ,

displayedTopBar(U1:Label) ,

pg-table(pg-table-entry(N2:Nat, videoMemory),

pg:PGTESet) ,

activeWebapp(N2:Nat) ,

vidMem(U1:Label) >

< webappmgr-id : proc | nextWAN(N:Nat) >

=> < testMsg : testMsg | cmd ( CMDList:CmdList) >

< kernel-id : kernel |

Att1:AttributeSet ,

displayedTopBar(U:Label) ,

pg-table(pg-table-entry(N2:Nat, nullMemory),

pg-table-entry(N:Nat, videoMemory),

pg:PGTESet) ,

activeWebapp(N:Nat) ,

vidMem(U:Label) >

< N:Nat : proc | rendered(U:Label),

URL(U:Label), loading(1) >

< N:Nat : pipe | fromKernel(mt) , toKernel(mt) >

< webappmgr-id : proc | nextWAN(s(N:Nat)) > .

A web app is being updated which is not currently the active web app,

see the condition, so this web app will be assigned the memory otherMemory

278



in the page table.

crl < testMsg : testMsg | cmd ( update(N:Nat, U:Label),

CMDList:CmdList) >

< kernel-id : kernel |

Att1:AttributeSet ,

displayedTopBar(U1:Label) ,

pg-table(pg-table-entry(N:Nat, nullMemory),

pg:PGTESet) ,

activeWebapp(N2:Nat) ,

vidMem(U1:Label)

>

< N:Nat : proc | rendered(U2:Label),

URL(U2:Label), loading(1) >

=> < testMsg : testMsg | cmd ( CMDList:CmdList) >

< kernel-id : kernel |

Att1:AttributeSet ,

displayedTopBar(U1:Label) ,

pg-table(pg-table-entry(N:Nat, otherMemory),

pg:PGTESet) ,

activeWebapp(N2:Nat) ,

vidMem(U1:Label)

>

< N:Nat : proc | rendered(U:Label),

URL(U:Label), loading(1) >

if N:Nat =/= N2:Nat .

In case the web app that is getting switched to is currently mapped to

the null memory, then there is a page fault, and it will be updated to point

at the actual video memory, which means the content of the display will get

refreshed and normal operation can continue.

crl < testMsg : testMsg | cmd ( tab-switch(N:Nat),

CMDList:CmdList) >

< kernel-id : kernel |

Att1:AttributeSet ,

displayedTopBar(U1:Label) ,

pg-table(pg-table-entry(N:Nat, nullMemory),

pg-table-entry(N2:Nat, videoMemory),

pg:PGTESet) ,

activeWebapp(N2:Nat) ,

vidMem(U1:Label)

>

279



< N:Nat : proc | rendered(U2:Label),

URL(U2:Label), loading(1) >

=> < testMsg : testMsg | cmd (CMDList:CmdList) >

< kernel-id : kernel |

Att1:AttributeSet ,

displayedTopBar(U2:Label) ,

pg-table(pg-table-entry(N:Nat, videoMemory),

pg-table-entry(N2:Nat, nullMemory), pg:PGTESet) ,

activeWebapp(N:Nat) ,

vidMem(about-blank)

>

< N:Nat : proc | rendered(U2:Label),

URL(U2:Label), loading(1) >

if N:Nat =/= N2:Nat .

endm

Now when the tab is switched to a web app for which a mapping to some

memory already exists, it is not re-mapped to the memory. This is actually

a crucial step to the bug we encounter. The video memory remapping is

based on page faults, but as there is no page fault, it does not get remapped.

Originally, this rule was part of the MEMORY module, but to make the error

more obvious and to be able to concisely present the fix below, we have

pushed this one rule into its own module, called CRUCIAL-RULE-BAD.

mod CRUCIAL-RULE-BAD is

inc MEMORY .

crl < testMsg : testMsg | cmd ( tab-switch(N:Nat),

CMDList:CmdList) >

< kernel-id : kernel |

Att1:AttributeSet ,

displayedTopBar(U1:Label) ,

pg-table(pg-table-entry(N:Nat, otherMemory),

pg-table-entry(N2:Nat, videoMemory),

pg:PGTESet) ,

activeWebapp(N2:Nat) ,

vidMem(U1:Label)

>

< N:Nat : proc | rendered(U2:Label),

URL(U2:Label), loading(1) >

=> < testMsg : testMsg | cmd (CMDList:CmdList) >

< kernel-id : kernel |

Att1:AttributeSet ,

280



displayedTopBar(U2:Label) ,

pg-table(pg-table-entry(N:Nat, otherMemory),

pg-table-entry(N2:Nat, nullMemory),

pg:PGTESet) ,

activeWebapp(N:Nat) ,

vidMem(about-blank)

>

< N:Nat : proc | rendered(U2:Label),

URL(U2:Label), loading(1) >

if N:Nat =/= N2:Nat .

endm

This search finds the cause of the empty display issues by exploring the

whole space spanned due to explore-space. After seeing the output, we can

simplify this for the next search. That simpler search uses the bug-trigger

instead, which is enough to see the bug. When running these search com-

mands, finding any solution means there is a bug, if there were no solution

than we would have not found any bug.

search initial-test explore-space

=>!

X:Configuration

< kernel-id : kernel | Att:AttributeSet ,

vidMem(about-blank) , activeWebapp(N:Nat) ,

pg-table(pg-table-entry(N:Nat, otherMemory),

pg:PGTESet) > .

search initial-test bug-trigger

=>!

X:Configuration

< kernel-id : kernel | Att:AttributeSet ,

vidMem(about-blank) , activeWebapp(N:Nat) ,

pg-table(pg-table-entry(N:Nat, otherMemory),

pg:PGTESet) > .

The fix for this is to not depend on page faults, and the rest of our analysis

uses a model without this issue, see the next section for the fix.

B.3.1 Fixed Display Memory

Now we are looking at the contents of file memory-fixed.maude. We only

need to change the one rule in the module CRUCIAL-RULE-BAD, to fix the

281



issue. Replacing that module with the module CRUCIAL-RULE-FIXED, where

the remapping of the video memory always happens independent of page

faults, is enough.

mod CRUCIAL-RULE-FIXED is

inc MEMORY .

crl < testMsg : testMsg | cmd ( tab-switch(N:Nat),

CMDList:CmdList) >

< kernel-id : kernel |

Att1:AttributeSet ,

displayedTopBar(U1:Label) ,

pg-table(pg-table-entry(N:Nat, M:Memory),

pg-table-entry(N2:Nat, videoMemory),

pg:PGTESet) ,

activeWebapp(N2:Nat) ,

vidMem(U1:Label)

>

< N:Nat : proc | rendered(U2:Label),

URL(U2:Label), loading(1) >

=> < testMsg : testMsg | cmd (CMDList:CmdList) >

< kernel-id : kernel |

Att1:AttributeSet ,

displayedTopBar(U2:Label) ,

pg-table(pg-table-entry(N:Nat, videoMemory),

pg-table-entry(N2:Nat, nullMemory),

pg:PGTESet) ,

activeWebapp(N:Nat) ,

vidMem(about-blank)

>

< N:Nat : proc | rendered(U2:Label),

URL(U2:Label), loading(1) >

if N:Nat =/= N2:Nat .

endm

Note that the difference is that N:Nat is always mapped to videoMemory

in this rule. Then we can run the exact search command from before, which

found errors when using the bad rule. It is the command looking for errors,

but now it finds none.

search initial-test explore-space

=>!

X:Configuration

282



< kernel-id : kernel | Att:AttributeSet ,

vidMem(about-blank) , activeWebapp(N:Nat) ,

pg-table(pg-table-entry(N:Nat, otherMemory),

pg:PGTESet) > .

With this, we know that a solution not depending on page table faults

does work for the display memory as shown in the search.

B.4 IBOS Analysis

Now we are looking at the content of the file analysis.maude. All references

in this section are to elements in Chapter 4.

This first command is just to check that the model works as expected.

in ibos.maude

search init-simp-kernel

inspect-space

=>*

X:Configuration

< N:Nat : pipe |

toKernel(ML:MessageList) ,

fromKernel(msg(OPOS-SYSCALL-FD-SEND-MESSAGE,

payload(Num:Nat, N:Nat, MSG-FETCH-URL,

V:MsgVal, L:Label, T:typed, U:untyped)),

ML’:MessageList) , Att:AttributeSet >

< kernel-id : kernel | Att2:AttributeSet ,

weblabels(pi(Num:Nat,L’:Label),WAPIS:WebappProcInfoSet) ,

networklabels(pi(N:Nat, L’:Label, L:Label),

NPIS:NetworkProcInfoSet) ,

displayedTopBar(URL:Label) > .

Next we look at the address bar correctness from Section 4.3.2. If there

is no solution, this means there is no mismatch and thus the address bar

correctness holds.

search init-simp-kernel

inspect-space

=>*

X:Configuration

< kernel-id : kernel | Att:AttributeSet ,

283



displayedTopBar(URL:Label) >

< display-id : proc |

displayedContent(URL’:Label),

Att2:AttributeSet >

such that URL:Label =/= URL’:Label

and URL:Label =/= about-blank

and URL’:Label =/= about-blank .

Now we are going into the code relevant for Section 4.3.3. This is the

check that all network requests from web page instances go to the proper

network process, property (1). This command will have no solution, so no

mismatched labeling exists and thus the property does hold.

search init-simp-kernel

inspect-space

=>*

X:Configuration

< N:Nat : pipe |

toKernel(ML:MessageList) ,

fromKernel(msg(OPOS-SYSCALL-FD-SEND-MESSAGE,

payload(Num:Nat, N:Nat, MSG-FETCH-URL,

V:MsgVal, L1:Label,

T:typed, U:untyped)),

ML’:MessageList) , Att:AttributeSet >

< kernel-id : kernel | Att2:AttributeSet ,

weblabels(pi(Num:Nat,L1’:Label), WAPIS:WebappProcInfoSet) ,

networklabels(pi(N:Nat, L2’:Label, L2:Label),

NPIS:NetworkProcInfoSet) ,

displayedTopBar(URL:Label) >

such that L1:Label =/= L2:Label

or L1’:Label =/= L2’:Label .

This checks the property that an incoming ethernet frame gets handed

to the right network process memory, property (2). Again, this search will

have no result, meaning no mismatch, meaning the property holds.

search init-simp-kernel

inspect-space

=>*

X:Configuration

< N:Nat : mem | in(L1:Label, Ll:LabelList),

Att:AttributeSet >

< kernel-id : kernel |

284



networklabels(pi(N:Nat, L’:Label, L2:Label),

NPIS:NetworkProcInfoSet) ,

Att2:AttributeSet >

such that L1:Label =/= L2:Label .

The next search command checks that any ethernet frame that is given

by a network process to the NIC via the DMA memory matches the marking

of the network process, i.e., property (3). Again, there is no solution for this,

meaning no mismatch, meaning the property holds.

search init-simp-kernel

inspect-space

=>*

X:Configuration

< N:Nat : mem | out(L1:Label) , Att:AttributeSet >

< kernel-id : kernel |

networklabels(pi(N:Nat, L’:Label, L2:Label),

NPIS:NetworkProcInfoSet) ,

Att2:AttributeSet >

such that L1:Label =/= L2:Label .

The return message from a network process to a web page instance only

has data from an appropriate source, property (4). No solution is found,

there is thus no mismatch between the labeling of the web app, the network

process and the data, so the property holds.

search init-simp-kernel

inspect-space

=>*

X:Configuration

< N:Nat : proc | rendered(Lll:Label) , URL(L’’:Label) ,

loading(1) , Att:AttributeSet >

< N:Nat : pipe | fromKernel(

msg(OPOS-SYSCALL-FD-SEND-MESSAGE,

payload(N’:Nat, N:Nat, MSG-RETURN-URL, V:MsgVal,

L2:Label, T:typed, U:untyped)),

ML:MessageList) , Att2:AttributeSet >

< kernel-id : kernel |

weblabels(pi(N:Nat, L’:Label), WAPIS:WebappProcInfoSet) ,

networklabels(pi(N’:Nat, L’:Label, L1:Label),

NPIS:NetworkProcInfoSet) ,

Att3:AttributeSet >

such that L1:Label =/= L2:Label

285



.

Last, we have the property (9), that is that the URL of the current tab

is displayed to the user. That means, there is never a mismatch between the

URL of the currently active web app and the address bar. As there is no

solution found this property holds again.

search init-simp-kernel

inspect-space

=>*

X:Configuration

< kernel-id : kernel | Att:AttributeSet ,

displayedTopBar(URL:Label) >

< display-id : proc |

activeWebapp(W:ProcId),

Att2:AttributeSet >

< W:ProcId : proc |

URL(URL’:Label),

Att3:AttributeSet >

such that URL:Label =/= URL’:Label .

The correctness of the other properties has been argued in Section 4.3.3,

so there is no need to repeat those arguments here.

286



REFERENCES

[1] IEEE 802.11 Local and Metropolitan Area Networks: Wireless LAN
Medium Access Control (MAC) and Physical (PHY) Specifications,
1999.

[2] Proceedings of the Network and Distributed System Security Sympo-
sium, NDSS 2006, San Diego, California, USA. The Internet Society,
2006.

[3] Mart́ın Abadi and Véronique Cortier. Deciding knowledge in security
protocols under equational theories. Theoretical Computer Science,
367(1-2):2–32, 2006.

[4] M. Alpuente, M. Falaschi, and G. Vidal. Partial evaluation of functional
logic programs. ACM Transactions on Programming Languages and
Systems, 20(4):768–844, 1998.

[5] Maŕıa Alpuente, Santiago Escobar, and José Iborra. Termination of
narrowing using dependency pairs. In Maria Garcia de la Banda and
Enrico Pontelli, editors, Logic Programming, 24th International Con-
ference, ICLP 2008, Udine, Italy, December 9-13 2008, Proceedings,
volume 5366 of Lecture Notes in Computer Science, pages 317–331.
Springer, 2008.

[6] Maŕıa Alpuente, Santiago Escobar, and José Iborra. Termination of
narrowing revisited. Theoretical Computer Science, 410(46):4608–4625,
2009.

[7] Maŕıa Alpuente, Santiago Escobar, and José Iborra. Modular termi-
nation of basic narrowing and equational unification. Logic Journal of
the IGPL, 2010. doi: 10.1093/jigpal/jzq009.

[8] Siva Anantharaman, Paliath Narendran, and Michaël Rusinowitch.
Unification modulo CUI plus distributivity axioms. J. Autom. Rea-
soning, 33(1):1–28, 2004.

[9] S. Antoy. Evaluation strategies for functional logic programming. Jour-
nal of Symbolic Computation, 40:875—-903, 2005.

287



[10] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy.
Journal of the ACM, 47(4):776–822, 2000.

[11] Alessandro Armando, David A. Basin, Yohan Boichut, Yannick Cheva-
lier, Luca Compagna, Jorge Cuéllar, Paul Hankes Drielsma, Pierre-
Cyrille Héam, Olga Kouchnarenko, Jacopo Mantovani, Sebastian
Mödersheim, David von Oheimb, Michaël Rusinowitch, Judson San-
tiago, Mathieu Turuani, Luca Viganò, and Laurent Vigneron. The
AVISPA tool for the automated validation of internet security proto-
cols and applications. In CAV, pages 281–285, 2005.

[12] Thomas Arts and Jürgen Giesl. Termination of term rewriting using
dependency pairs. Theoretical Computer Science, 236(1-2):133–178,
2000.

[13] Franz Baader and Klaus U. Schulz. Unification in the union of disjoint
equational theories: Combining decision procedures. In Deepak Kapur,
editor, CADE, volume 607 of Lecture Notes in Computer Science, pages
50–65. Springer, 1992.

[14] Thomas Ball and Sriram K. Rajamani. The SLAM project: debugging
system software via static analysis. In POPL, pages 1–3, 2002.

[15] David A. Basin, Sebastian Mödersheim, and Luca Viganò. An on-the-
fly model-checker for security protocol analysis. In Einar Snekkenes and
Dieter Gollmann, editors, ESORICS, volume 2808 of Lecture Notes in
Computer Science, pages 253–270. Springer, 2003.

[16] Mathieu Baudet, Véronique Cortier, and Stéphanie Delaune. YAPA: A
generic tool for computing intruder knowledge. In Treinen [120], pages
148–163.

[17] Bruno Blanchet. An efficient cryptographic protocol verifier based on
prolog rules. In CSFW, pages 82–96. IEEE Computer Society, 2001.

[18] Bugtraq list. Firefox visual spoofing flaws. http://securityfocus.

com/bid. Bug IDs: 10532, 10832, 12153, 12234, 12798, 14526, 14919.

[19] Bugtraq list. Internet explorer visual spoofing flaws. http://

securityfocus.com/bid. Bug IDs: 3469, 10023, 10943, 11561, 11590,
11851, 11855, 1254.

[20] Bugtraq list. Netscape navigator visual spoofing flaws. http://

securityfocus.com/bid. Bug IDs: 7564, 10389.

[21] Sergiu Bursuc and Hubert Comon-Lundh. Protocol security and alge-
braic properties: Decision results for a bounded number of sessions. In
Treinen [120], pages 133–147.

288

http://securityfocus.com/bid
http://securityfocus.com/bid
http://securityfocus.com/bid
http://securityfocus.com/bid
http://securityfocus.com/bid
http://securityfocus.com/bid


[22] Hao Chen, Drew Dean, and David Wagner. Model checking one million
lines of C code. In NDSS. The Internet Society, 2004.

[23] Shuo Chen, José Meseguer, Ralf Sasse, Helen J. Wang, and Yi-Min
Wang. A systematic approach to uncover security flaws in GUI logic.
In IEEE Symposium on Security and Privacy, pages 71–85. IEEE Com-
puter Society, 2007.

[24] Shuo Chen, David Ross, and Yi-Min Wang. An analysis of browser
domain-isolation bugs and a light-weight transparent defense mecha-
nism. In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F.
Syverson, editors, ACM Conference on Computer and Communications
Security, pages 2–11. ACM, 2007.

[25] Yannick Chevalier, Ralf Küsters, Michaël Rusinowitch, and Mathieu
Turuani. An NP decision procedure for protocol insecurity with XOR.
In LICS, pages 261–270. IEEE Computer Society, 2003.

[26] Yannick Chevalier and Michaël Rusinowitch. Hierarchical combination
of intruder theories. Inf. Comput., 206(2-4):352–377, 2008.

[27] Yannick Chevalier and Michaël Rusinowitch. Symbolic protocol anal-
ysis in the union of disjoint intruder theories: Combining decision pro-
cedures. Theoretical Computer Science, 411(10):1261–1282, 2010.

[28] Stefan Ciobâca, Stéphanie Delaune, and Steve Kremer. Computing
knowledge in security protocols under convergent equational theories.
In Renate A. Schmidt, editor, CADE, volume 5663 of Lecture Notes in
Computer Science, pages 355–370. Springer, 2009.

[29] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,
and C. L. Talcott. All About Maude - A High-Performance Logi-
cal Framework, volume 4350 of Lecture Notes in Computer Science.
Springer, 2007.

[30] Manuel Clavel, Francisco Durán, Steven Eker, Santiago Escobar,
Patrick Lincoln, Narciso Mart́ı-Oliet, José Meseguer, and Carolyn L.
Talcott. Unification and narrowing in Maude 2.4. In Ralf Treinen, edi-
tor, Rewriting Techniques and Applications, 20th International Confer-
ence, RTA 2009, Braśılia, Brazil, June 29 - July 1, 2009, Proceedings,
volume 5595 of Lecture Notes in Computer Science, pages 380–390.
Springer, 2009.

[31] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Mart́ı-Oliet, José Meseguer, and Carolyn L. Talcott, editors. All About
Maude - A High-Performance Logical Framework, How to Specify, Pro-
gram and Verify Systems in Rewriting Logic, volume 4350 of Lecture
Notes in Computer Science. Springer, 2007.

289



[32] Hubert Comon-Lundh and Stéphanie Delaune. The finite variant prop-
erty: How to get rid of some algebraic properties. In Giesl [61], pages
294–307.

[33] Véronique Cortier, Jérémie Delaitre, and Stéphanie Delaune. Safely
composing security protocols. In Vikraman Arvind and Sanjiva Prasad,
editors, FSTTCS, volume 4855 of Lecture Notes in Computer Science,
pages 352–363. Springer, 2007.

[34] Véronique Cortier, Stéphanie Delaune, and Pascal Lafourcade. A sur-
vey of algebraic properties used in cryptographic protocols. Journal of
Computer Security, 14(1):1–43, 2006.

[35] Richard S. Cox, Steven D. Gribble, Henry M. Levy, and Jacob Gorm
Hansen. A safety-oriented platform for web applications. In IEEE
Symposium on Security and Privacy, pages 350–364. IEEE Computer
Society, 2006.

[36] Cas J. F. Cremers. The Scyther tool: Verification, falsification, and
analysis of security protocols. In CAV, pages 414–418, 2008.

[37] Rachna Dhamija, J. D. Tygar, and Marti A. Hearst. Why phishing
works. In Grinter et al. [67], pages 581–590.

[38] Rachna Dhamija and J. Doug Tygar. The battle against phishing:
Dynamic security skins. In Lorrie Faith Cranor, editor, SOUPS, vol-
ume 93 of ACM International Conference Proceeding Series, pages 77–
88. ACM, 2005.

[39] Danny Dolev and Andrew Chi-Chih Yao. On the security of public key
protocols. IEEE Transactions on Information Theory, 29(2):198–207,
1983.

[40] Francisco Durán, Steven Eker, Santiago Escobar, José Meseguer, and
Carolyn L. Talcott. Variants, unification, narrowing, and symbolic
reachability in Maude 2.6. In Manfred Schmidt-Schauss, editor, Pro-
ceedings of the 22nd International Conference on Rewriting Techniques
and Applications, RTA 2011, May 30 - June 1, Novi Sad, Serbia,
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011. To
appear.

[41] Francisco Durán, Salvador Lucas, and José Meseguer. Mtt: The maude
termination tool (system description). In Alessandro Armando, Peter
Baumgartner, and Gilles Dowek, editors, IJCAR, volume 5195 of Lec-
ture Notes in Computer Science, pages 313–319. Springer, 2008.

290



[42] Francisco Durán, Salvador Lucas, and José Meseguer. Termination
modulo combinations of equational theories. In Silvio Ghilardi and
Roberto Sebastiani, editors, FroCos, volume 5749 of Lecture Notes in
Computer Science, pages 246–262. Springer, 2009.

[43] Francisco Durán and José Meseguer. A Maude coherence checker tool
for conditional order-sorted rewrite theories. In Ölveczky [101], pages
86–103.

[44] Francisco Durán and José Meseguer. On the Church-Rosser and coher-
ence properties of conditional order-sorted rewrite theories. Journal of
Logic and Algebraic Programming, 2012.

[45] Jeremy Epstein, John McHugh, Rita Pascale, Hilarie Orman, Glenn
Benson, and et al. A prototype B3 trusted X Window System. In
Computer Security Applications Conference, 1991.

[46] Serdar Erbatur, Santiago Escobar, Deepak Kapur, Zhiqiang Liu,
Christopher Lynch, Catherine Meadows, José Meseguer, Paliath
Narendran, Sonia Santiago, , and Ralf Sasse. Effective symbolic pro-
tocol analysis via equational irreducibility conditions. 2012. Accepted
at ESORICS 2012.

[47] Santiago Escobar, Catherine Meadows, and José Meseguer. A
rewriting-based inference system for the NRL protocol analyzer and its
meta-logical properties. Theoretical Computer Science, 367(1-2):162–
202, 2006.

[48] Santiago Escobar, Catherine Meadows, and José Meseguer. Maude-
NPA: Cryptographic protocol analysis modulo equational properties.
In Alessandro Aldini, Gilles Barthe, and Roberto Gorrieri, editors,
FOSAD, volume 5705 of Lecture Notes in Computer Science, pages
1–50. Springer, 2007.

[49] Santiago Escobar, Catherine Meadows, and José Meseguer. State space
reduction in the Maude-NRL protocol analyzer. In Sushil Jajodia and
Javier López, editors, ESORICS, volume 5283 of Lecture Notes in Com-
puter Science, pages 548–562. Springer, 2008.

[50] Santiago Escobar, Catherine Meadows, and José Meseguer. State space
reduction in the Maude-NRL protocol analyzer. Information and Com-
putation, 2012. In Press.

[51] Santiago Escobar and José Meseguer. Symbolic model checking of
infinite-state systems using narrowing. In Franz Baader, editor, RTA,
volume 4533 of Lecture Notes in Computer Science, pages 153–168.
Springer, 2007.

291



[52] Santiago Escobar, José Meseguer, and Ralf Sasse. Effectively checking
or disproving the finite variant property. Technical Report UIUCDCS-
R-2008-2960, Department of Computer Science - University of Illinois
at Urbana-Champaign, April 2008.

[53] Santiago Escobar, José Meseguer, and Ralf Sasse. Effectively checking
the finite variant property. In Andrei Voronkov, editor, RTA, volume
5117 of Lecture Notes in Computer Science, pages 79–93. Springer,
2008.

[54] Santiago Escobar, José Meseguer, and Ralf Sasse. Variant narrowing
and equational unification. Electronic Notes Theoretical Computer Sci-
ence, 238(3):103–119, 2009.

[55] Santiago Escobar, José Meseguer, and Prasanna Thati. Natural nar-
rowing for general term rewriting systems. In Giesl [61], pages 279–293.

[56] Santiago Escobar, Ralf Sasse, and José Meseguer. Folding variant nar-
rowing and optimal variant termination. In Ölveczky [101], pages 52–
68.

[57] Santiago Escobar, Ralf Sasse, and José Meseguer. Folding variant nar-
rowing and optimal variant termination. Journal of Logic and Algebraic
Programming, (0):–, 2012.

[58] F. J. Thayer Fabrega, J. Herzog, and J. Guttman. Strand Spaces: What
Makes a Security Protocol Correct? Journal of Computer Security,
7:191–230, 1999.

[59] Edward W. Felten, Dirk Balfanz, Drew Dean, , and Dan S. Wallach.
Web spoofing: An internet con game. In 20th National Information
Systems Security Conference, 1996.

[60] Dinei Florencio and Cormac Herley. Stopping a phishing attack, even
when the victims ignore warnings. Technical report, Microsoft Resarch,
MSR-TR-2005-142.

[61] Jürgen Giesl, editor. Term Rewriting and Applications, 16th Interna-
tional Conference, RTA 2005, Nara, Japan, April 19-21, 2005, Pro-
ceedings, volume 3467 of Lecture Notes in Computer Science. Springer,
2005.

[62] Jürgen Giesl and Deepak Kapur. Dependency pairs for equational
rewriting. In Aart Middeldorp, editor, RTA, volume 2051 of Lecture
Notes in Computer Science, pages 93–108. Springer, 2001.

292



[63] Jürgen Giesl, Peter Schneider-Kamp, and René Thiemann. Automatic
termination proofs in the dependency pair framework. In Ulrich Fur-
bach and Natarajan Shankar, editors, IJCAR, volume 4130 of Lecture
Notes in Computer Science, pages 281–286. Springer, 2006.

[64] Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan
Falke. Mechanizing and improving dependency pairs. Journal of Au-
tomated Reasoning, 37(3):155–203, 2006.

[65] Joseph A. Goguen and José Meseguer. Equality, types, modules, and
(why not ?) generics for logic programming. Journal of Logic Program-
ming, 1(2):179–210, 1984.

[66] Chris Grier, Shuo Tang, and Samuel T. King. Designing and imple-
menting the OP and OP2 web browsers. TWEB, 5(2):11, 2011.

[67] Rebecca E. Grinter, Tom Rodden, Paul M. Aoki, Edward Cutrell,
Robin Jeffries, and Gary M. Olson, editors. Proceedings of the 2006
Conference on Human Factors in Computing Systems, CHI 2006,
Montréal, Québec, Canada, April 22-27, 2006. ACM, 2006.

[68] Qing Guo, Paliath Narendran, and David A. Wolfram. Unification and
matching modulo nilpotence. In Michael A. McRobbie and John K.
Slaney, editors, CADE, volume 1104 of Lecture Notes in Computer
Science, pages 261–274. Springer, 1996.

[69] M. Hanus. The Integration of Functions into Logic Programming: From
Theory to Practice. Journal of Logic Programming, 19&20:583–628,
1994.

[70] Michael Hanus. Lazy narrowing with simplification. Journal of Com-
puter Languages, 23(2-4):61–85, 1997.

[71] Michael Hanus. Multi-paradigm declarative languages. In Verónica
Dahl and Ilkka Niemelä, editors, ICLP, volume 4670 of Lecture Notes
in Computer Science, pages 45–75. Springer, 2007.

[72] D. Harkins and D. Carrel. The Internet Key Exchange (IKE), Novem-
ber 1998. IETF RFC 2409.

[73] Steffen Hölldobler. Foundations of Equational Logic Programming, vol-
ume 353 of Lecture Notes in Computer Science. Springer, 1989.

[74] Jean-Marie Hullot. Canonical forms and unification. In Wolfgang Bibel
and Robert A. Kowalski, editors, CADE, volume 87 of Lecture Notes
in Computer Science, pages 318–334. Springer, 1980.

293



[75] Galen Hunt and Doug Brubacher. Detours: Binary interception of
Win32 functions. In Proceedings of the 3rd USENIX Windows NT
Symposium, pages 135–143, Seattle, WA, July 1999.

[76] Symantec Inc. Symantec global internet security threat report:
Trends for 2008, volume xiv, April 2009. http://www.symantec.com/
threatreport/archive.jsp.

[77] Symantec Inc. Symantec global internet security threat report:
Trends for 2009, volume xv, April 2010. http://www.symantec.com/

threatreport/archive.jsp.

[78] Jean-Pierre Jouannaud, Claude Kirchner, and Hélène Kirchner. Incre-
mental construction of unification algorithms in equational theories. In
Josep Dı́az, editor, ICALP, volume 154 of Lecture Notes in Computer
Science, pages 361–373. Springer, 1983.

[79] Jean-Pierre Jouannaud and Hélène Kirchner. Completion of a set of
rules modulo a set of equations. SIAM J. Comput., 15(4):1155–1194,
1986.

[80] Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. seL4: Formal verification of an operating-system
kernel. Commun. ACM, 53(6):107–115, 2010.

[81] Ralf Küsters and Tomasz Truderung. Reducing protocol analysis with
XOR to the XOR-free case in the Horn theory based approach. In
ACM Conference on Computer and Communications Security, pages
129–138, 2008.

[82] Ralf Küsters and Tomasz Truderung. Using ProVerif to analyze proto-
cols with Diffie-Hellman exponentiation. In CSF, pages 157–171. IEEE
Computer Society, 2009.

[83] Pascal Lafourcade, Vanessa Terrade, and Sylvain Vigier. Comparison
of cryptographic verification tools dealing with algebraic properties. In
Formal Aspects in Security and Trust, pages 173–185, 2009.

[84] V. Benjamin Livshits and Monica S. Lam. Finding security vulner-
abilities in java applications with static analysis, USENIX Security
Symposium 2005.

[85] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key
protocol using FDR. In TACAS, pages 147–166, 1996.

294

http://www.symantec.com/threatreport/archive.jsp
http://www.symantec.com/threatreport/archive.jsp
http://www.symantec.com/threatreport/archive.jsp
http://www.symantec.com/threatreport/archive.jsp


[86] Gavin Lowe and A. W. Roscoe. Using CSP to detect errors in the TMN
protocol. IEEE Trans. Software Eng., 23(10):659–669, 1997.

[87] Catherine Meadows. Formal verification of cryptographic protocols:
A survey. In Josef Pieprzyk and Reihaneh Safavi-Naini, editors, ASI-
ACRYPT, volume 917 of Lecture Notes in Computer Science, pages
135–150. Springer, 1994.

[88] Catherine Meadows. The NRL protocol analyzer: An overview. Journal
of Logic Programming, 26(2):113–131, 1996.

[89] José Meseguer. Conditional rewriting logic as a unified model of con-
currency. Theoretical Computer Science, 96(1):73–155, 1992.

[90] José Meseguer. Membership algebra as a logical framework for equa-
tional specification. In Francesco Parisi-Presicce, editor, WADT, vol-
ume 1376 of Lecture Notes in Computer Science, pages 18–61. Springer,
1997.

[91] José Meseguer and Prasanna Thati. Symbolic reachability analysis
using narrowing and its application to verification of cryptographic
protocols. Higher-Order and Symbolic Computation, 20(1–2):123–160,
2007.

[92] L4Ka::Pistachio microkernel, 2010. http://l4ka.org/projects/

pistachio.

[93] Microsoft Corporation. Microsoft’s vision for an identity metasystem.
http://msdn.microsoft.com/.

[94] Aart Middeldorp and Erik Hamoen. Completeness results for basic nar-
rowing. Journal of Applicable Algebra in Engineering, Communication,
and Computing, 5:213–253, 1994.

[95] Juan Carlos González Moreno, Maria Teresa Hortalá-González, Fran-
cisco Javier López-Fraguas, and Mario Rodŕıguez-Artalejo. An ap-
proach to declarative programming based on a rewriting logic. Journal
of Logic Programming, 40(1):47–87, 1999.

[96] Alexander Moshchuk, Tanya Bragin, Steven D. Gribble, and Henry M.
Levy. A crawler-based study of spyware in the web. In NDSS [2].

[97] MSDN. Changing element styles. http://msdn.microsoft.com/.

[98] MSDN. Ole background. http://msdn.microsoft.com/library/

default.asp?url=/library/en-us/vccore/html/_core_ole_

background.asp.

295

 http://l4ka.org/projects/pistachio
 http://l4ka.org/projects/pistachio
http://msdn.microsoft.com/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore/html/_core_ole_background.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore/html/_core_ole_background.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore/html/_core_ole_background.asp


[99] Naoki Nishida and Germán Vidal. Termination of narrowing via termi-
nation of rewriting. Appl. Algebra Eng. Commun. Comput., 21(3):177–
225, 2010.

[100] E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002.

[101] Peter Csaba Ölveczky, editor. Rewriting Logic and Its Applications -
8th International Workshop, WRLA 2010, Held as a Satellite Event
of ETAPS 2010, Paphos, Cyprus, March 20-21, 2010, Revised Selected
Papers, volume 6381 of Lecture Notes in Computer Science. Springer,
2010.

[102] Gerald E. Peterson and Mark E. Stickel. Complete sets of reductions
for some equational theories. J. ACM, 28(2):233–264, 1981.

[103] Niels Provos, Panayiotis Mavrommatis, Moheeb Abu Rajab, and
Fabian Monrose. All your iframes point to us. In Paul C. van Oorschot,
editor, USENIX Security Symposium, pages 1–16. USENIX Associa-
tion, 2008.

[104] Charles Reis, John Dunagan, Helen J. Wang, Opher Dubrovsky, and
Saher Esmeir. BrowserShield: Vulnerability-driven filtering of dynamic
html. In OSDI, pages 61–74. USENIX Association, 2006.

[105] Mario Rodŕıguez-Artalejo. Functional and constraint logic program-
ming. In Hubert Comon, Claude Marché, and Ralf Treinen, editors,
CCL, volume 2002 of Lecture Notes in Computer Science, pages 202–
270. Springer, 1999.

[106] Blake Ross, Collin Jackson, Nicholas Miyake, and et al. Stronger pass-
word authentication using browser extensions. In Usenix Security Sym-
posium, 2005.

[107] Grigore Rosu and Andrei Stefanescu. Matching logic: a new program
verification approach. In Richard N. Taylor, Harald Gall, and Nenad
Medvidovic, editors, ICSE, pages 868–871. ACM, 2011.

[108] Grigore Rosu and Andrei Stefanescu. From hoare logic to matching
logic. In Proceedings of the 18th International Symposium on Formal
Methods (FM’12), LNCS. Springer, 2012. To appear.

[109] Grigore Rosu and Andrei Stefanescu. Towards a unified theory of opera-
tional and axiomatic semantics. In Proceedings of the 39th International
Colloquium on Automata, Languages and Programming (ICALP’12),
LNCS. Springer, 2012. To appear.

[110] Peter Y. A. Ryan and Steve A. Schneider. An attack on a recursive
authentication protocol. A cautionary tale. Inf. Process. Lett., 65(1):7–
10, 1998.

296



[111] S. Santiago, Carolyn L. Talcott, Santiago Escobar, Catherine Mead-
ows, and José Meseguer. A graphical user interface for Maude-NPA.
Electronic Notes Theoretical Computer Science, 258(1):3–20, 2009.

[112] Ralf Sasse. Source code for dissertation: Security models in rewriting
logic for cryptographic protocols and browsers, July 2012. http://

formal.cs.illinois.edu/rsasse/dissertation-code/.

[113] Ralf Sasse, Santiago Escobar, Catherine Meadows, and José Meseguer.
Protocol analysis modulo combination of theories: A case study in
Maude-NPA. In Jorge Cuéllar, Javier Lopez, Gilles Barthe, and
Alexander Pretschner, editors, STM, volume 6710 of Lecture Notes in
Computer Science, pages 163–178. Springer, 2010.

[114] Manfred Schmidt-Schauß. Unification in a combination of arbitrary
disjoint equational theories. J. Symb. Comput., 8(1/2):51–99, 1989.

[115] Kapil Singh, Alexander Moshchuk, Helen J. Wang, and Wenke Lee.
On the incoherencies in web browser access control policies. In IEEE
Symposium on Security and Privacy, pages 463–478. IEEE Computer
Society, 2010.

[116] SpoofStick. http://www.spoofstick.com.

[117] Shuo Tang, Haohui Mai, and Samuel T. King. Trust and protection in
the illinois browser operating system. In Remzi H. Arpaci-Dusseau and
Brad Chen, editors, OSDI, pages 17–32. USENIX Association, 2010.

[118] Makoto Tatebayashi, Natsume Matsuzaki, and David B. Newman Jr.
Key distribution protocol for digital mobile communication systems.
In Gilles Brassard, editor, CRYPTO, volume 435 of Lecture Notes in
Computer Science, pages 324–334. Springer, 1989.

[119] TeReSe, editor. Term Rewriting Systems. Cambridge University Press,
Cambridge, 2003.

[120] Ralf Treinen, editor. Rewriting Techniques and Applications, 20th In-
ternational Conference, RTA 2009, Braśılia, Brazil, June 29 - July 1,
2009, Proceedings, volume 5595 of Lecture Notes in Computer Science.
Springer, 2009.

[121] Mathieu Turuani. The CL-Atse protocol analyser. In RTA, pages 277–
286, 2006.

[122] Laurent Vigneron. Automated deduction techniques for studying rough
algebras. Fundamenta Informaticae, 33(1):85–103, 1998.

297

http://formal.cs.illinois.edu/rsasse/dissertation-code/
http://formal.cs.illinois.edu/rsasse/dissertation-code/
http://www.spoofstick.com


[123] Emanuele Viola. E-unifiability via narrowing. In Antonio Restivo,
Simona Ronchi Della Rocca, and Luca Roversi, editors, ICTCS, volume
2202 of Lecture Notes in Computer Science, pages 426–438. Springer,
2001.

[124] Patrick Viry. Equational rules for rewriting logic. Theoretical Computer
Science, 285(2):487–517, 2002.

[125] Yi-Min Wang, Doug Beck, Xuxian Jiang, Roussi Roussev, Chad Ver-
bowski, Shuo Chen, and Samuel T. King. Automated web patrol with
Strider HoneyMonkeys: Finding web sites that exploit browser vulner-
abilities. In NDSS [2].

[126] Min Wu, Robert C. Miller, and Simson L. Garfinkel. Do security tool-
bars actually prevent phishing attacks? In Grinter et al. [67], pages
601–610.

[127] Junfeng Yang, Paul Twohey, Dawson R. Engler, and Madanlal Musu-
vathi. Using model checking to find serious file system errors (awarded
best paper!). In OSDI, pages 273–288, 2004.

[128] Zishuang (Eileen) Ye and Sean W. Smith. Trusted paths for browsers.
In Dan Boneh, editor, USENIX Security Symposium, pages 263–279.
USENIX, 2002.

[129] Ka-Ping Yee and Kragen Sitaker. Passpet: convenient password man-
agement and phishing protection. In Lorrie Faith Cranor, editor,
SOUPS, volume 149 of ACM International Conference Proceeding Se-
ries, pages 32–43. ACM, 2006.

298


	CHAPTER 1 Introduction
	Summary of Contributions
	Organization

	CHAPTER 2 Preliminaries
	The Maude Tool
	Maude-NPA
	Internet Explorer
	Illinois Browser Operating System

	CHAPTER 3 GUI Logic Analysis for IE
	Overview of Our Methodology
	Case Study 1: Status Bar Spoofing Based on Static HTML
	Background: Representation and Layout of an HTML Page
	Program Logic of Mouse Handling and Status Bar Behavior
	Formalization of Status Bar Spoofing
	Scenarios Suggested by the Results

	Case Study 2: Address Bar Spoofing
	Background: Address Bar Basics
	Overview of the HTML Navigation Logic
	Formalization of the Navigations and the Address Bar Behavior
	Uncovered Spoofing Scenarios

	Discussions
	How to Defend Against GUI Logic Exploits
	 Achieving GUI Integrity is Challenging
	A Broad Spectrum of Tools Can Be Used for Systematic Exploration

	Related Work

	CHAPTER 4 Browser Security Analysis for IBOS
	IBOS
	IBOS Architecture

	Formal Modeling Methodology
	IBOS Architecture Modeling

	Case Studies
	Case Study 1: Display Memory
	Case Study 2: Address Bar
	Case Study 3: Same Origin Policy and More

	Related Work

	CHAPTER 5 Folding Variant Narrowing and Optimal Variant Termination
	Preliminaries: R,Ax-rewriting
	Variants
	Narrowing Strategies and Optimal Variant Termination
	Completeness of Narrowing w.r.t. Rewriting
	Narrowing Strategies and Their Properties
	Basic Narrowing (Modulo) is neither Variant-Complete nor Optimally Variant-Terminating

	Folding Variant Narrowing
	Variant Narrowing Strategy

	The Finite Variant Property
	Computing Variants for Theories with the Finite Variant Property
	Necessary and Sufficient Conditions for FV

	Checking the Finite Variant Property
	Checking Variant-Preservingness
	Checking Finiteness of Variant-Preserving Narrowing Sequences
	Disproving the Finite Variant Property

	Variant-based Equational Unification
	Applications
	Related Work

	CHAPTER 6 Protocol Analysis Modulo Combination of Theories: A Case Study in Maude-NPA
	Protocol Specification and Analysis in Maude-NPA
	A Unification Algorithm for XOR pk-sk AC
	Finding attacks modulo XOR pk-sk AC in Maude-NPA
	NSL
	TMN - Key Exchange Protocol
	Wired Equivalent Privacy Protocol
	Fixed Version of Wired Equivalent Privacy Protocol

	Related Work
	Discussion

	CHAPTER 7 Conclusions and Future Work
	Conclusions
	Browser Analysis Conclusions
	Folding Variant Narrowing Conclusions
	Protocol Analysis Conclusions

	Future Work
	Browser Analysis Future Work
	Folding Variant Narrowing Future Work
	Protocol Analysis Future Work


	APPENDIX A Explained Maude Specification  of the IE Model
	Status Bar - Explained Specification
	Address Bar - Explained Specification

	APPENDIX B Explained Maude Specification  of the IBOS Model
	IBOS - Model Architecture
	Internal Rules Termination
	Display Memory Modeling
	Fixed Display Memory

	IBOS Analysis

	REFERENCES

